Spaces:
Sleeping
Sleeping
supundhananjaya
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,413 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def dummy_model(img):
|
7 |
img_array = np.array(img)
|
8 |
return img_array
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
4 |
+
import torch.nn as nn
|
5 |
+
import math
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
import torch
|
9 |
+
from typing import Dict
|
10 |
+
import functools
|
11 |
+
import inspect
|
12 |
+
from types import SimpleNamespace
|
13 |
|
14 |
+
class Autoencoder(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
# N, 1 512,512
|
18 |
|
19 |
+
self.encoder = nn.Sequential(
|
20 |
+
# nn.Conv2d(input_channel,16,3,stride=2, padding=1),
|
21 |
+
nn.Conv2d(1,2,3,stride=2, padding=1), # N, 2, 256, 256
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Conv2d(2,3,3,stride=2, padding=1), # N, 3, 128, 128
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.Conv2d(3,4,3,stride=2, padding=1), # N, 4, 64, 64
|
26 |
+
)
|
27 |
+
|
28 |
+
self.decoder = nn.Sequential(
|
29 |
+
nn.ConvTranspose2d(4,3,3,stride=2, padding=1, output_padding=1),
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.ConvTranspose2d(3,2,3,stride=2, padding=1,output_padding=1),
|
32 |
+
nn.ReLU(),
|
33 |
+
nn.ConvTranspose2d(2,1,3,stride=2, padding=1,output_padding=1),
|
34 |
+
nn.Tanh()
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self,x):
|
38 |
+
encoded = self.encoder(x)
|
39 |
+
decoded = self.decoder(encoded)
|
40 |
+
return decoded
|
41 |
+
|
42 |
+
def register_to_config(init):
|
43 |
+
r"""
|
44 |
+
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
45 |
+
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
46 |
+
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
47 |
+
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
48 |
+
"""
|
49 |
+
|
50 |
+
@functools.wraps(init)
|
51 |
+
def inner_init(self, *args, **kwargs):
|
52 |
+
# Ignore private kwargs in the init.
|
53 |
+
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
54 |
+
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
|
55 |
+
|
56 |
+
ignore = getattr(self, "ignore_for_config", [])
|
57 |
+
# Get positional arguments aligned with kwargs
|
58 |
+
new_kwargs = {}
|
59 |
+
signature = inspect.signature(init)
|
60 |
+
parameters = {
|
61 |
+
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
|
62 |
+
}
|
63 |
+
for arg, name in zip(args, parameters.keys()):
|
64 |
+
new_kwargs[name] = arg
|
65 |
+
|
66 |
+
# Then add all kwargs
|
67 |
+
new_kwargs.update(
|
68 |
+
{
|
69 |
+
k: init_kwargs.get(k, default)
|
70 |
+
for k, default in parameters.items()
|
71 |
+
if k not in ignore and k not in new_kwargs
|
72 |
+
}
|
73 |
+
)
|
74 |
+
new_kwargs = {**config_init_kwargs, **new_kwargs}
|
75 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
76 |
+
init(self, *args, **init_kwargs)
|
77 |
+
|
78 |
+
return inner_init
|
79 |
+
|
80 |
+
|
81 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
|
82 |
+
"""
|
83 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
84 |
+
(1-beta) over time from t = [0,1].
|
85 |
+
|
86 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
87 |
+
to that part of the diffusion process.
|
88 |
+
|
89 |
+
|
90 |
+
Args:
|
91 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
92 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
93 |
+
prevent singularities.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
97 |
+
"""
|
98 |
+
|
99 |
+
def alpha_bar(time_step):
|
100 |
+
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
|
101 |
+
|
102 |
+
betas = []
|
103 |
+
for i in range(num_diffusion_timesteps):
|
104 |
+
t1 = i / num_diffusion_timesteps
|
105 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
106 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
107 |
+
return torch.tensor(betas)
|
108 |
+
|
109 |
+
|
110 |
+
class DDIMScheduler():
|
111 |
+
config_name = "scheduler_config.json"
|
112 |
+
_deprecated_kwargs = ["predict_epsilon"]
|
113 |
+
order = 1
|
114 |
+
|
115 |
+
@register_to_config
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
num_train_timesteps: int = 1000,
|
119 |
+
beta_start: float = 0.0001,
|
120 |
+
beta_end: float = 0.02,
|
121 |
+
beta_schedule: str = "linear",
|
122 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
123 |
+
clip_sample: bool = False,
|
124 |
+
set_alpha_to_one: bool = True,
|
125 |
+
steps_offset: int = 0,
|
126 |
+
prediction_type: str = "epsilon",
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
message = (
|
130 |
+
"Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler ="
|
131 |
+
" DDIMScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`."
|
132 |
+
)
|
133 |
+
predict_epsilon = kwargs.get('predict_epsilon', None)
|
134 |
+
if predict_epsilon is not None:
|
135 |
+
self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample")
|
136 |
+
|
137 |
+
if trained_betas is not None:
|
138 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
139 |
+
elif beta_schedule == "linear":
|
140 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
141 |
+
elif beta_schedule == "scaled_linear":
|
142 |
+
# this schedule is very specific to the latent diffusion model.
|
143 |
+
self.betas = (
|
144 |
+
torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
145 |
+
)
|
146 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
147 |
+
# Glide cosine schedule
|
148 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
149 |
+
else:
|
150 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
151 |
+
|
152 |
+
self.alphas = 1.0 - self.betas
|
153 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
154 |
+
|
155 |
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
156 |
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
157 |
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
158 |
+
# whether we use the final alpha of the "non-previous" one.
|
159 |
+
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
160 |
+
|
161 |
+
# standard deviation of the initial noise distribution
|
162 |
+
self.init_noise_sigma = 1.0
|
163 |
+
|
164 |
+
# setable values
|
165 |
+
self.num_inference_steps = None
|
166 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
167 |
+
|
168 |
+
def register_to_config(self, **kwargs):
|
169 |
+
if self.config_name is None:
|
170 |
+
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
|
171 |
+
# Special case for `kwargs` used in deprecation warning added to schedulers
|
172 |
+
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
|
173 |
+
# or solve in a more general way.
|
174 |
+
kwargs.pop("kwargs", None)
|
175 |
+
for key, value in kwargs.items():
|
176 |
+
try:
|
177 |
+
setattr(self, key, value)
|
178 |
+
except AttributeError as err:
|
179 |
+
print(f"Can't set {key} with value {value} for {self}")
|
180 |
+
raise err
|
181 |
+
|
182 |
+
if not hasattr(self, "_internal_dict"):
|
183 |
+
internal_dict = kwargs
|
184 |
+
else:
|
185 |
+
previous_dict = dict(self._internal_dict)
|
186 |
+
internal_dict = {**self._internal_dict, **kwargs}
|
187 |
+
print(f"Updating config from {previous_dict} to {internal_dict}")
|
188 |
+
|
189 |
+
self._internal_dict = internal_dict
|
190 |
+
|
191 |
+
@property
|
192 |
+
def config(self):
|
193 |
+
"""
|
194 |
+
Returns the config of the class as a frozen dictionary
|
195 |
+
Returns:
|
196 |
+
`Dict[str, Any]`: Config of the class.
|
197 |
+
"""
|
198 |
+
return SimpleNamespace(**self._internal_dict)
|
199 |
+
|
200 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
201 |
+
"""
|
202 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
203 |
+
current timestep.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
sample (`torch.FloatTensor`): input sample
|
207 |
+
timestep (`int`, optional): current timestep
|
208 |
+
|
209 |
+
Returns:
|
210 |
+
`torch.FloatTensor`: scaled input sample
|
211 |
+
"""
|
212 |
+
return sample
|
213 |
+
|
214 |
+
def _get_variance(self, timestep, prev_timestep):
|
215 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
216 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
217 |
+
beta_prod_t = 1 - alpha_prod_t
|
218 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
219 |
+
|
220 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
221 |
+
|
222 |
+
return variance
|
223 |
+
|
224 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
225 |
+
"""
|
226 |
+
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
num_inference_steps (`int`):
|
230 |
+
the number of diffusion steps used when generating samples with a pre-trained model.
|
231 |
+
"""
|
232 |
+
self.num_inference_steps = num_inference_steps
|
233 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
234 |
+
# creates integer timesteps by multiplying by ratio
|
235 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
236 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
237 |
+
self.timesteps = torch.from_numpy(timesteps).to(device)
|
238 |
+
self.timesteps += self.config.steps_offset
|
239 |
+
|
240 |
+
def step(
|
241 |
+
self,
|
242 |
+
model_output: torch.FloatTensor,
|
243 |
+
timestep: int,
|
244 |
+
sample: torch.FloatTensor,
|
245 |
+
eta: float = 0.0,
|
246 |
+
use_clipped_model_output: bool = False,
|
247 |
+
generator=None,
|
248 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
249 |
+
return_dict: bool = True,
|
250 |
+
) -> Union[Dict, Tuple]:
|
251 |
+
"""
|
252 |
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
253 |
+
process from the learned model outputs (most often the predicted noise).
|
254 |
+
|
255 |
+
Args:
|
256 |
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
257 |
+
timestep (`int`): current discrete timestep in the diffusion chain.
|
258 |
+
sample (`torch.FloatTensor`):
|
259 |
+
current instance of sample being created by diffusion process.
|
260 |
+
eta (`float`): weight of noise for added noise in diffusion step.
|
261 |
+
use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped
|
262 |
+
predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when
|
263 |
+
`self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would
|
264 |
+
coincide with the one provided as input and `use_clipped_model_output` will have not effect.
|
265 |
+
generator: random number generator.
|
266 |
+
variance_noise (`torch.FloatTensor`): instead of generating noise for the variance using `generator`, we
|
267 |
+
can directly provide the noise for the variance itself. This is useful for methods such as
|
268 |
+
CycleDiffusion. (https://arxiv.org/abs/2210.05559)
|
269 |
+
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
|
273 |
+
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
274 |
+
returning a tuple, the first element is the sample tensor.
|
275 |
+
|
276 |
+
"""
|
277 |
+
if self.num_inference_steps is None:
|
278 |
+
raise ValueError(
|
279 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
280 |
+
)
|
281 |
+
|
282 |
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
283 |
+
# Ideally, read DDIM paper in-detail understanding
|
284 |
+
|
285 |
+
# Notation (<variable name> -> <name in paper>
|
286 |
+
# - pred_noise_t -> e_theta(x_t, t)
|
287 |
+
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
288 |
+
# - std_dev_t -> sigma_t
|
289 |
+
# - eta -> η
|
290 |
+
# - pred_sample_direction -> "direction pointing to x_t"
|
291 |
+
# - pred_prev_sample -> "x_t-1"
|
292 |
+
|
293 |
+
# 1. get previous step value (=t-1)
|
294 |
+
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
295 |
+
|
296 |
+
# 2. compute alphas, betas
|
297 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
298 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
299 |
+
|
300 |
+
beta_prod_t = 1 - alpha_prod_t
|
301 |
+
|
302 |
+
# 3. compute predicted original sample from predicted noise also called
|
303 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
304 |
+
if self.config.prediction_type == "epsilon":
|
305 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
306 |
+
elif self.config.prediction_type == "sample":
|
307 |
+
pred_original_sample = model_output
|
308 |
+
elif self.config.prediction_type == "v_prediction":
|
309 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
310 |
+
# predict V
|
311 |
+
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
312 |
+
else:
|
313 |
+
raise ValueError(
|
314 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
315 |
+
" `v_prediction`"
|
316 |
+
)
|
317 |
+
|
318 |
+
# 4. Clip "predicted x_0"
|
319 |
+
if self.config.clip_sample:
|
320 |
+
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
|
321 |
+
|
322 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
323 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
324 |
+
variance = self._get_variance(timestep, prev_timestep)
|
325 |
+
std_dev_t = eta * variance ** (0.5)
|
326 |
+
|
327 |
+
if use_clipped_model_output:
|
328 |
+
# the model_output is always re-derived from the clipped x_0 in Glide
|
329 |
+
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
330 |
+
|
331 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
332 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
333 |
+
|
334 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
335 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
336 |
+
|
337 |
+
if eta > 0:
|
338 |
+
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
|
339 |
+
device = model_output.device
|
340 |
+
if variance_noise is not None and generator is not None:
|
341 |
+
raise ValueError(
|
342 |
+
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
|
343 |
+
" `variance_noise` stays `None`."
|
344 |
+
)
|
345 |
+
|
346 |
+
if variance_noise is None:
|
347 |
+
if device.type == "mps":
|
348 |
+
# randn does not work reproducibly on mps
|
349 |
+
variance_noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator)
|
350 |
+
variance_noise = variance_noise.to(device)
|
351 |
+
else:
|
352 |
+
variance_noise = torch.randn(
|
353 |
+
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
354 |
+
)
|
355 |
+
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * variance_noise
|
356 |
+
|
357 |
+
prev_sample = prev_sample + variance
|
358 |
+
|
359 |
+
if not return_dict:
|
360 |
+
return (prev_sample,)
|
361 |
+
|
362 |
+
return dict(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
363 |
+
|
364 |
+
def add_noise(
|
365 |
+
self,
|
366 |
+
original_samples: torch.FloatTensor,
|
367 |
+
noise: torch.FloatTensor,
|
368 |
+
timesteps: torch.IntTensor,
|
369 |
+
) -> torch.FloatTensor:
|
370 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
371 |
+
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
|
372 |
+
timesteps = timesteps.to(original_samples.device)
|
373 |
+
|
374 |
+
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
375 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
376 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
377 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
378 |
+
|
379 |
+
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
380 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
381 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
382 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
383 |
+
|
384 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
385 |
+
return noisy_samples
|
386 |
+
|
387 |
+
def get_velocity(
|
388 |
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
389 |
+
) -> torch.FloatTensor:
|
390 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
391 |
+
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
|
392 |
+
timesteps = timesteps.to(sample.device)
|
393 |
+
|
394 |
+
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5
|
395 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
396 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
397 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
398 |
+
|
399 |
+
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5
|
400 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
401 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
402 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
403 |
+
|
404 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
405 |
+
return velocity
|
406 |
+
|
407 |
+
def __len__(self):
|
408 |
+
return self.config.num_train_timesteps
|
409 |
+
|
410 |
+
|
411 |
def dummy_model(img):
|
412 |
img_array = np.array(img)
|
413 |
return img_array
|