File size: 1,220 Bytes
4ae9a9b
d06b8a4
0654cd1
353a028
0654cd1
1db5c15
d06b8a4
0654cd1
 
ac4b420
 
1db5c15
0654cd1
 
 
 
1db5c15
0654cd1
 
 
 
 
 
 
a4c873c
d06b8a4
a4c873c
d06b8a4
46c676d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import transformers
import gradio as gr
import datasets
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
# from transformers import ViTFeatureExtractor, ViTForImageClassification

dataset = datasets.load_dataset('beans')

extractor = AutoFeatureExtractor.from_pretrained("suresh-subramanian/beans-classification")
model = AutoModelForImageClassification.from_pretrained("suresh-subramanian/beans-classification")
# feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")

labels = dataset['train'].features['labels'].names

def classify(im):
  features = extractor(im, return_tensors='pt')
  with torch.no_grad():
    logits = model(features["pixel_values"])[-1]
  probability = torch.nn.functional.softmax(logits, dim=-1)
  probs = probability[0].detach().numpy()
  confidences = {label: float(probs[i]) for i, label in enumerate(labels)} 
  return confidences
  
  # examples = [["powdery mildew.jpg"], ["375010.jpg"]]
# Set gradio interface
gr_interface = gr.Interface(classify, inputs='image', outputs='label', title='Bean Classification', description='Monitor your crops health in easier way')
# Launch gradio
gr_interface.launch(debug=True)