File size: 8,578 Bytes
27b8e5e
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e908cc5
27b8e5e
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27b8e5e
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#import spaces
import argparse
import os
from util import util
import torch
import models
import data

class BaseOptions():
    def __init__(self):
        self.initialized = False
    
    def initialize(self, parser):
        """Initialize options used during both training and test time."""
        # Basic options
        parser.add_argument('--dataroot', required=False, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
        parser.add_argument('--batch_size', type=int, default=2, help='input batch size')
        parser.add_argument('--load_size', type=int, default=512, help='scale images to this size')  # Modified default
        parser.add_argument('--crop_size', type=int, default=1024, help='then crop to this size')    # Modified default
        parser.add_argument('--input_nc', type=int, default=1, help='# of input image channels')     # Modified default
        parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels')   # Modified default
        parser.add_argument('--nz', type=int, default=64, help='#latent vector')                     # Modified default
        parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0  0,1,2, 0,2, -1 for CPU mode')
        parser.add_argument('--name', type=str, default='color2manga_cycle_ganstft', help='name of the experiment')  # Modified default
        parser.add_argument('--preprocess', type=str, default='none', help='not implemented')         # Modified default
        parser.add_argument('--dataset_mode', type=str, default='aligned', help='aligned,single')
        parser.add_argument('--model', type=str, default='cycle_ganstft', help='chooses which model to use')
        parser.add_argument('--direction', type=str, default='BtoA', help='AtoB or BtoA')            # Modified default
        parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
        parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
        parser.add_argument('--local_rank', default=0, type=int, help='# threads for loading data')
        parser.add_argument('--checkpoints_dir', type=str, default=self.model_global_path+'/ScreenStyle/color2manga/', help='models are saved here')  # Modified default
        parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
        parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator')
        parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset.')
        parser.add_argument('--no_flip', action='store_false', help='if specified, do not flip the images for data argumentation')  # Modified default

        # Model parameters
        parser.add_argument('--level', type=int, default=0, help='level to train')
        parser.add_argument('--num_Ds', type=int, default=2, help='number of Discriminators')
        parser.add_argument('--netD', type=str, default='basic_256_multi', help='selects model to use for netD')
        parser.add_argument('--netD2', type=str, default='basic_256_multi', help='selects model to use for netD2')
        parser.add_argument('--netG', type=str, default='unet_256', help='selects model to use for netG')
        parser.add_argument('--netC', type=str, default='unet_128', help='selects model to use for netC')
        parser.add_argument('--netE', type=str, default='conv_256', help='selects model to use for netE')
        parser.add_argument('--nef', type=int, default=48, help='# of encoder filters in the first conv layer')  # Modified default
        parser.add_argument('--ngf', type=int, default=48, help='# of gen filters in the last conv layer')       # Modified default
        parser.add_argument('--ndf', type=int, default=32, help='# of discrim filters in the first conv layer')  # Modified default
        parser.add_argument('--norm', type=str, default='layer', help='instance normalization or batch normalization')
        parser.add_argument('--upsample', type=str, default='bilinear', help='basic | bilinear')                  # Modified default
        parser.add_argument('--nl', type=str, default='prelu', help='non-linearity activation: relu | lrelu | elu')
        parser.add_argument('--no_encode', action='store_true', help='if specified, print more debugging information')
        parser.add_argument('--color2screen', action='store_true', help='continue training: load the latest model including RGB model')  # Modified default

        # Extra parameters
        parser.add_argument('--where_add', type=str, default='all', help='input|all|middle; where to add z in the network G')
        parser.add_argument('--conditional_D', action='store_true', help='if use conditional GAN for D')
        parser.add_argument('--init_type', type=str, default='kaiming', help='network initialization [normal | xavier | kaiming | orthogonal]')
        parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
        parser.add_argument('--center_crop', action='store_true', help='if apply for center cropping for the test')  # Modified default
        parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
        parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
        parser.add_argument('--display_winsize', type=int, default=256, help='display window size')

        # Special tasks
        self.initialized = True
        return parser
        
    #@spaces.GPU
    def gather_options(self):
        """Initialize our parser with basic options (only once)."""
        if not self.initialized:
            parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
            parser = self.initialize(parser)
        
        # Get the basic options
        opt, _ = parser.parse_known_args()

        # Modify model-related parser options
        model_name = opt.model
        model_option_setter = models.get_option_setter(model_name)
        parser = model_option_setter(parser, self.isTrain)
        opt, _ = parser.parse_known_args()  # Parse again with new defaults

        # Modify dataset-related parser options
        dataset_name = opt.dataset_mode
        dataset_option_setter = data.get_option_setter(dataset_name)
        parser = dataset_option_setter(parser, self.isTrain)

        # Save and return the parser
        self.parser = parser
        return parser.parse_args()

    def print_options(self, opt):
        """Print and save options."""
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

        # Save to the disk
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        if not os.path.exists(expr_dir):
            try:
                util.mkdirs(expr_dir)
            except:
                pass
        file_name = os.path.join(expr_dir, 'opt.txt')
        with open(file_name, 'wt') as opt_file:
            opt_file.write(message)
            opt_file.write('\n')

    #@spaces.GPU
    def parse(self, model_global_path):
        """Parse options, create checkpoints directory suffix, and set up gpu device."""
        self.model_global_path = model_global_path
        opt = self.gather_options()
        opt.isTrain = self.isTrain  # train or test
        

        # Process opt.suffix
        if opt.suffix:
            suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
            opt.name = opt.name + suffix

        self.print_options(opt)

        # Set gpu ids
        str_ids = opt.gpu_ids.split(',')
        opt.gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                opt.gpu_ids.append(id)
        if len(opt.gpu_ids) > 0:
            torch.cuda.set_device(opt.gpu_ids[0])

        self.opt = opt
        return self.opt