File size: 4,322 Bytes
77771e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import pickle
def tensor2im(input_image, imtype=np.uint8):
""""Convert a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
"""
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array
if image_numpy.shape[0] == 1: # grayscale to RGB
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def tensor2vec(vector_tensor):
numpy_vec = vector_tensor.data.cpu().numpy()
if numpy_vec.ndim == 4:
return numpy_vec[:, :, 0, 0]
else:
return numpy_vec
def pickle_load(file_name):
data = None
with open(file_name, 'rb') as f:
data = pickle.load(f)
return data
def pickle_save(file_name, data):
with open(file_name, 'wb') as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
def diagnose_network(net, name='network'):
"""Calculate and print the mean of average absolute(gradients)
Parameters:
net (torch network) -- Torch network
name (str) -- the name of the network
"""
mean = 0.0
count = 0
for param in net.parameters():
if param.grad is not None:
mean += torch.mean(torch.abs(param.grad.data))
count += 1
if count > 0:
mean = mean / count
print(name)
print(mean)
def interp_z(z0, z1, num_frames, interp_mode='linear'):
zs = []
if interp_mode == 'linear':
for n in range(num_frames):
ratio = n / float(num_frames - 1)
z_t = (1 - ratio) * z0 + ratio * z1
zs.append(z_t[np.newaxis, :])
zs = np.concatenate(zs, axis=0).astype(np.float32)
if interp_mode == 'slerp':
z0_n = z0 / (np.linalg.norm(z0) + 1e-10)
z1_n = z1 / (np.linalg.norm(z1) + 1e-10)
omega = np.arccos(np.dot(z0_n, z1_n))
sin_omega = np.sin(omega)
if sin_omega < 1e-10 and sin_omega > -1e-10:
zs = interp_z(z0, z1, num_frames, interp_mode='linear')
else:
for n in range(num_frames):
ratio = n / float(num_frames - 1)
z_t = np.sin((1 - ratio) * omega) / sin_omega * z0 + np.sin(ratio * omega) / sin_omega * z1
zs.append(z_t[np.newaxis, :])
zs = np.concatenate(zs, axis=0).astype(np.float32)
return zs
def save_image(image_numpy, image_path):
"""Save a numpy image to the disk
Parameters:
image_numpy (numpy array) -- input numpy array
image_path (str) -- the path of the image
"""
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def print_numpy(x, val=True, shp=False):
"""Print the mean, min, max, median, std, and size of a numpy array
Parameters:
val (bool) -- if print the values of the numpy array
shp (bool) -- if print the shape of the numpy array
"""
x = x.astype(np.float64)
if shp:
print('shape,', x.shape)
if val:
x = x.flatten()
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
|