File size: 5,907 Bytes
77771e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from typing import List, Optional, Tuple, Union

import torch

from diffusers import DiffusionPipeline
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipelines.pipeline_utils import ImagePipelineOutput
from diffusers.schedulers.scheduling_utils import SchedulerMixin


class IADBScheduler(SchedulerMixin, ConfigMixin):
    """
    IADBScheduler is a scheduler for the Iterative Ξ±-(de)Blending denoising method. It is simple and minimalist.

    For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html
    """

    def step(
        self,
        model_output: torch.Tensor,
        timestep: int,
        x_alpha: torch.Tensor,
    ) -> torch.Tensor:
        """
        Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.Tensor`): direct output from learned diffusion model. It is the direction from x0 to x1.
            timestep (`float`): current timestep in the diffusion chain.
            x_alpha (`torch.Tensor`): x_alpha sample for the current timestep

        Returns:
            `torch.Tensor`: the sample at the previous timestep

        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        alpha = timestep / self.num_inference_steps
        alpha_next = (timestep + 1) / self.num_inference_steps

        d = model_output

        x_alpha = x_alpha + (alpha_next - alpha) * d

        return x_alpha

    def set_timesteps(self, num_inference_steps: int):
        self.num_inference_steps = num_inference_steps

    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        alpha: torch.Tensor,
    ) -> torch.Tensor:
        return original_samples * alpha + noise * (1 - alpha)

    def __len__(self):
        return self.config.num_train_timesteps


class IADBPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

    def __init__(self, unet, scheduler):
        super().__init__()

        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
        batch_size: int = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        num_inference_steps: int = 50,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                The number of images to generate.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
        """

        # Sample gaussian noise to begin loop
        if isinstance(self.unet.config.sample_size, int):
            image_shape = (
                batch_size,
                self.unet.config.in_channels,
                self.unet.config.sample_size,
                self.unet.config.sample_size,
            )
        else:
            image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype)

        # set step values
        self.scheduler.set_timesteps(num_inference_steps)
        x_alpha = image.clone()
        for t in self.progress_bar(range(num_inference_steps)):
            alpha = t / num_inference_steps

            # 1. predict noise model_output
            model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample

            # 2. step
            x_alpha = self.scheduler.step(model_output, t, x_alpha)

        image = (x_alpha * 0.5 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)