ColorFlow / diffusers /scripts /convert_amused.py
jhaozhuang
app
77771e4
import inspect
import os
from argparse import ArgumentParser
import numpy as np
import torch
from muse import MaskGiTUViT, VQGANModel
from muse import PipelineMuse as OldPipelineMuse
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import VQModel
from diffusers.models.attention_processor import AttnProcessor
from diffusers.models.unets.uvit_2d import UVit2DModel
from diffusers.pipelines.amused.pipeline_amused import AmusedPipeline
from diffusers.schedulers import AmusedScheduler
torch.backends.cuda.enable_flash_sdp(False)
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_math_sdp(True)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = False
device = "cuda"
def main():
args = ArgumentParser()
args.add_argument("--model_256", action="store_true")
args.add_argument("--write_to", type=str, required=False, default=None)
args.add_argument("--transformer_path", type=str, required=False, default=None)
args = args.parse_args()
transformer_path = args.transformer_path
subfolder = "transformer"
if transformer_path is None:
if args.model_256:
transformer_path = "openMUSE/muse-256"
else:
transformer_path = (
"../research-run-512-checkpoints/research-run-512-with-downsample-checkpoint-554000/unwrapped_model/"
)
subfolder = None
old_transformer = MaskGiTUViT.from_pretrained(transformer_path, subfolder=subfolder)
old_transformer.to(device)
old_vae = VQGANModel.from_pretrained("openMUSE/muse-512", subfolder="vae")
old_vae.to(device)
vqvae = make_vqvae(old_vae)
tokenizer = CLIPTokenizer.from_pretrained("openMUSE/muse-512", subfolder="text_encoder")
text_encoder = CLIPTextModelWithProjection.from_pretrained("openMUSE/muse-512", subfolder="text_encoder")
text_encoder.to(device)
transformer = make_transformer(old_transformer, args.model_256)
scheduler = AmusedScheduler(mask_token_id=old_transformer.config.mask_token_id)
new_pipe = AmusedPipeline(
vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler
)
old_pipe = OldPipelineMuse(
vae=old_vae, transformer=old_transformer, text_encoder=text_encoder, tokenizer=tokenizer
)
old_pipe.to(device)
if args.model_256:
transformer_seq_len = 256
orig_size = (256, 256)
else:
transformer_seq_len = 1024
orig_size = (512, 512)
old_out = old_pipe(
"dog",
generator=torch.Generator(device).manual_seed(0),
transformer_seq_len=transformer_seq_len,
orig_size=orig_size,
timesteps=12,
)[0]
new_out = new_pipe("dog", generator=torch.Generator(device).manual_seed(0)).images[0]
old_out = np.array(old_out)
new_out = np.array(new_out)
diff = np.abs(old_out.astype(np.float64) - new_out.astype(np.float64))
# assert diff diff.sum() == 0
print("skipping pipeline full equivalence check")
print(f"max diff: {diff.max()}, diff.sum() / diff.size {diff.sum() / diff.size}")
if args.model_256:
assert diff.max() <= 3
assert diff.sum() / diff.size < 0.7
else:
assert diff.max() <= 1
assert diff.sum() / diff.size < 0.4
if args.write_to is not None:
new_pipe.save_pretrained(args.write_to)
def make_transformer(old_transformer, model_256):
args = dict(old_transformer.config)
force_down_up_sample = args["force_down_up_sample"]
signature = inspect.signature(UVit2DModel.__init__)
args_ = {
"downsample": force_down_up_sample,
"upsample": force_down_up_sample,
"block_out_channels": args["block_out_channels"][0],
"sample_size": 16 if model_256 else 32,
}
for s in list(signature.parameters.keys()):
if s in ["self", "downsample", "upsample", "sample_size", "block_out_channels"]:
continue
args_[s] = args[s]
new_transformer = UVit2DModel(**args_)
new_transformer.to(device)
new_transformer.set_attn_processor(AttnProcessor())
state_dict = old_transformer.state_dict()
state_dict["cond_embed.linear_1.weight"] = state_dict.pop("cond_embed.0.weight")
state_dict["cond_embed.linear_2.weight"] = state_dict.pop("cond_embed.2.weight")
for i in range(22):
state_dict[f"transformer_layers.{i}.norm1.norm.weight"] = state_dict.pop(
f"transformer_layers.{i}.attn_layer_norm.weight"
)
state_dict[f"transformer_layers.{i}.norm1.linear.weight"] = state_dict.pop(
f"transformer_layers.{i}.self_attn_adaLN_modulation.mapper.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_q.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.query.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_k.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.key.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_v.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.value.weight"
)
state_dict[f"transformer_layers.{i}.attn1.to_out.0.weight"] = state_dict.pop(
f"transformer_layers.{i}.attention.out.weight"
)
state_dict[f"transformer_layers.{i}.norm2.norm.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattn_layer_norm.weight"
)
state_dict[f"transformer_layers.{i}.norm2.linear.weight"] = state_dict.pop(
f"transformer_layers.{i}.cross_attn_adaLN_modulation.mapper.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_q.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.query.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_k.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.key.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_v.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.value.weight"
)
state_dict[f"transformer_layers.{i}.attn2.to_out.0.weight"] = state_dict.pop(
f"transformer_layers.{i}.crossattention.out.weight"
)
state_dict[f"transformer_layers.{i}.norm3.norm.weight"] = state_dict.pop(
f"transformer_layers.{i}.ffn.pre_mlp_layer_norm.weight"
)
state_dict[f"transformer_layers.{i}.norm3.linear.weight"] = state_dict.pop(
f"transformer_layers.{i}.ffn.adaLN_modulation.mapper.weight"
)
wi_0_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_0.weight")
wi_1_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_1.weight")
proj_weight = torch.concat([wi_1_weight, wi_0_weight], dim=0)
state_dict[f"transformer_layers.{i}.ff.net.0.proj.weight"] = proj_weight
state_dict[f"transformer_layers.{i}.ff.net.2.weight"] = state_dict.pop(f"transformer_layers.{i}.ffn.wo.weight")
if force_down_up_sample:
state_dict["down_block.downsample.norm.weight"] = state_dict.pop("down_blocks.0.downsample.0.norm.weight")
state_dict["down_block.downsample.conv.weight"] = state_dict.pop("down_blocks.0.downsample.1.weight")
state_dict["up_block.upsample.norm.weight"] = state_dict.pop("up_blocks.0.upsample.0.norm.weight")
state_dict["up_block.upsample.conv.weight"] = state_dict.pop("up_blocks.0.upsample.1.weight")
state_dict["mlm_layer.layer_norm.weight"] = state_dict.pop("mlm_layer.layer_norm.norm.weight")
for i in range(3):
state_dict[f"down_block.res_blocks.{i}.norm.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.norm.norm.weight"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.0.weight"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.2.gamma"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.2.beta"
)
state_dict[f"down_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.channelwise.4.weight"
)
state_dict[f"down_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop(
f"down_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight"
)
state_dict[f"down_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attn_layer_norm.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.query.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.key.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.value.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.attention.out.weight"
)
state_dict[f"down_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.query.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.key.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.value.weight"
)
state_dict[f"down_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop(
f"down_blocks.0.attention_blocks.{i}.crossattention.out.weight"
)
state_dict[f"up_block.res_blocks.{i}.norm.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.norm.norm.weight"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.0.weight"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.2.gamma"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.2.beta"
)
state_dict[f"up_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.channelwise.4.weight"
)
state_dict[f"up_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop(
f"up_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight"
)
state_dict[f"up_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attn_layer_norm.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.query.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.key.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.value.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.attention.out.weight"
)
state_dict[f"up_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.query.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.key.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.value.weight"
)
state_dict[f"up_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop(
f"up_blocks.0.attention_blocks.{i}.crossattention.out.weight"
)
for key in list(state_dict.keys()):
if key.startswith("up_blocks.0"):
key_ = "up_block." + ".".join(key.split(".")[2:])
state_dict[key_] = state_dict.pop(key)
if key.startswith("down_blocks.0"):
key_ = "down_block." + ".".join(key.split(".")[2:])
state_dict[key_] = state_dict.pop(key)
new_transformer.load_state_dict(state_dict)
input_ids = torch.randint(0, 10, (1, 32, 32), device=old_transformer.device)
encoder_hidden_states = torch.randn((1, 77, 768), device=old_transformer.device)
cond_embeds = torch.randn((1, 768), device=old_transformer.device)
micro_conds = torch.tensor([[512, 512, 0, 0, 6]], dtype=torch.float32, device=old_transformer.device)
old_out = old_transformer(input_ids.reshape(1, -1), encoder_hidden_states, cond_embeds, micro_conds)
old_out = old_out.reshape(1, 32, 32, 8192).permute(0, 3, 1, 2)
new_out = new_transformer(input_ids, encoder_hidden_states, cond_embeds, micro_conds)
# NOTE: these differences are solely due to using the geglu block that has a single linear layer of
# double output dimension instead of two different linear layers
max_diff = (old_out - new_out).abs().max()
total_diff = (old_out - new_out).abs().sum()
print(f"Transformer max_diff: {max_diff} total_diff: {total_diff}")
assert max_diff < 0.01
assert total_diff < 1500
return new_transformer
def make_vqvae(old_vae):
new_vae = VQModel(
act_fn="silu",
block_out_channels=[128, 256, 256, 512, 768],
down_block_types=[
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
],
in_channels=3,
latent_channels=64,
layers_per_block=2,
norm_num_groups=32,
num_vq_embeddings=8192,
out_channels=3,
sample_size=32,
up_block_types=[
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
"UpDecoderBlock2D",
],
mid_block_add_attention=False,
lookup_from_codebook=True,
)
new_vae.to(device)
# fmt: off
new_state_dict = {}
old_state_dict = old_vae.state_dict()
new_state_dict["encoder.conv_in.weight"] = old_state_dict.pop("encoder.conv_in.weight")
new_state_dict["encoder.conv_in.bias"] = old_state_dict.pop("encoder.conv_in.bias")
convert_vae_block_state_dict(old_state_dict, "encoder.down.0", new_state_dict, "encoder.down_blocks.0")
convert_vae_block_state_dict(old_state_dict, "encoder.down.1", new_state_dict, "encoder.down_blocks.1")
convert_vae_block_state_dict(old_state_dict, "encoder.down.2", new_state_dict, "encoder.down_blocks.2")
convert_vae_block_state_dict(old_state_dict, "encoder.down.3", new_state_dict, "encoder.down_blocks.3")
convert_vae_block_state_dict(old_state_dict, "encoder.down.4", new_state_dict, "encoder.down_blocks.4")
new_state_dict["encoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("encoder.mid.block_1.norm1.weight")
new_state_dict["encoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("encoder.mid.block_1.norm1.bias")
new_state_dict["encoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("encoder.mid.block_1.conv1.weight")
new_state_dict["encoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("encoder.mid.block_1.conv1.bias")
new_state_dict["encoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("encoder.mid.block_1.norm2.weight")
new_state_dict["encoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("encoder.mid.block_1.norm2.bias")
new_state_dict["encoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("encoder.mid.block_1.conv2.weight")
new_state_dict["encoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("encoder.mid.block_1.conv2.bias")
new_state_dict["encoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("encoder.mid.block_2.norm1.weight")
new_state_dict["encoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("encoder.mid.block_2.norm1.bias")
new_state_dict["encoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("encoder.mid.block_2.conv1.weight")
new_state_dict["encoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("encoder.mid.block_2.conv1.bias")
new_state_dict["encoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("encoder.mid.block_2.norm2.weight")
new_state_dict["encoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("encoder.mid.block_2.norm2.bias")
new_state_dict["encoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("encoder.mid.block_2.conv2.weight")
new_state_dict["encoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("encoder.mid.block_2.conv2.bias")
new_state_dict["encoder.conv_norm_out.weight"] = old_state_dict.pop("encoder.norm_out.weight")
new_state_dict["encoder.conv_norm_out.bias"] = old_state_dict.pop("encoder.norm_out.bias")
new_state_dict["encoder.conv_out.weight"] = old_state_dict.pop("encoder.conv_out.weight")
new_state_dict["encoder.conv_out.bias"] = old_state_dict.pop("encoder.conv_out.bias")
new_state_dict["quant_conv.weight"] = old_state_dict.pop("quant_conv.weight")
new_state_dict["quant_conv.bias"] = old_state_dict.pop("quant_conv.bias")
new_state_dict["quantize.embedding.weight"] = old_state_dict.pop("quantize.embedding.weight")
new_state_dict["post_quant_conv.weight"] = old_state_dict.pop("post_quant_conv.weight")
new_state_dict["post_quant_conv.bias"] = old_state_dict.pop("post_quant_conv.bias")
new_state_dict["decoder.conv_in.weight"] = old_state_dict.pop("decoder.conv_in.weight")
new_state_dict["decoder.conv_in.bias"] = old_state_dict.pop("decoder.conv_in.bias")
new_state_dict["decoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("decoder.mid.block_1.norm1.weight")
new_state_dict["decoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("decoder.mid.block_1.norm1.bias")
new_state_dict["decoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("decoder.mid.block_1.conv1.weight")
new_state_dict["decoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("decoder.mid.block_1.conv1.bias")
new_state_dict["decoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("decoder.mid.block_1.norm2.weight")
new_state_dict["decoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("decoder.mid.block_1.norm2.bias")
new_state_dict["decoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("decoder.mid.block_1.conv2.weight")
new_state_dict["decoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("decoder.mid.block_1.conv2.bias")
new_state_dict["decoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("decoder.mid.block_2.norm1.weight")
new_state_dict["decoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("decoder.mid.block_2.norm1.bias")
new_state_dict["decoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("decoder.mid.block_2.conv1.weight")
new_state_dict["decoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("decoder.mid.block_2.conv1.bias")
new_state_dict["decoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("decoder.mid.block_2.norm2.weight")
new_state_dict["decoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("decoder.mid.block_2.norm2.bias")
new_state_dict["decoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("decoder.mid.block_2.conv2.weight")
new_state_dict["decoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("decoder.mid.block_2.conv2.bias")
convert_vae_block_state_dict(old_state_dict, "decoder.up.0", new_state_dict, "decoder.up_blocks.4")
convert_vae_block_state_dict(old_state_dict, "decoder.up.1", new_state_dict, "decoder.up_blocks.3")
convert_vae_block_state_dict(old_state_dict, "decoder.up.2", new_state_dict, "decoder.up_blocks.2")
convert_vae_block_state_dict(old_state_dict, "decoder.up.3", new_state_dict, "decoder.up_blocks.1")
convert_vae_block_state_dict(old_state_dict, "decoder.up.4", new_state_dict, "decoder.up_blocks.0")
new_state_dict["decoder.conv_norm_out.weight"] = old_state_dict.pop("decoder.norm_out.weight")
new_state_dict["decoder.conv_norm_out.bias"] = old_state_dict.pop("decoder.norm_out.bias")
new_state_dict["decoder.conv_out.weight"] = old_state_dict.pop("decoder.conv_out.weight")
new_state_dict["decoder.conv_out.bias"] = old_state_dict.pop("decoder.conv_out.bias")
# fmt: on
assert len(old_state_dict.keys()) == 0
new_vae.load_state_dict(new_state_dict)
input = torch.randn((1, 3, 512, 512), device=device)
input = input.clamp(-1, 1)
old_encoder_output = old_vae.quant_conv(old_vae.encoder(input))
new_encoder_output = new_vae.quant_conv(new_vae.encoder(input))
assert (old_encoder_output == new_encoder_output).all()
old_decoder_output = old_vae.decoder(old_vae.post_quant_conv(old_encoder_output))
new_decoder_output = new_vae.decoder(new_vae.post_quant_conv(new_encoder_output))
# assert (old_decoder_output == new_decoder_output).all()
print("kipping vae decoder equivalence check")
print(f"vae decoder diff {(old_decoder_output - new_decoder_output).float().abs().sum()}")
old_output = old_vae(input)[0]
new_output = new_vae(input)[0]
# assert (old_output == new_output).all()
print("skipping full vae equivalence check")
print(f"vae full diff { (old_output - new_output).float().abs().sum()}")
return new_vae
def convert_vae_block_state_dict(old_state_dict, prefix_from, new_state_dict, prefix_to):
# fmt: off
new_state_dict[f"{prefix_to}.resnets.0.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.weight")
new_state_dict[f"{prefix_to}.resnets.0.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.bias")
new_state_dict[f"{prefix_to}.resnets.0.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.weight")
new_state_dict[f"{prefix_to}.resnets.0.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.bias")
new_state_dict[f"{prefix_to}.resnets.0.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.weight")
new_state_dict[f"{prefix_to}.resnets.0.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.bias")
new_state_dict[f"{prefix_to}.resnets.0.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.weight")
new_state_dict[f"{prefix_to}.resnets.0.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.bias")
if f"{prefix_from}.block.0.nin_shortcut.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.weight")
new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.bias")
new_state_dict[f"{prefix_to}.resnets.1.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.weight")
new_state_dict[f"{prefix_to}.resnets.1.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.bias")
new_state_dict[f"{prefix_to}.resnets.1.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.weight")
new_state_dict[f"{prefix_to}.resnets.1.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.bias")
new_state_dict[f"{prefix_to}.resnets.1.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.weight")
new_state_dict[f"{prefix_to}.resnets.1.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.bias")
new_state_dict[f"{prefix_to}.resnets.1.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.weight")
new_state_dict[f"{prefix_to}.resnets.1.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.bias")
if f"{prefix_from}.downsample.conv.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.downsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.weight")
new_state_dict[f"{prefix_to}.downsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.bias")
if f"{prefix_from}.upsample.conv.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.upsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.weight")
new_state_dict[f"{prefix_to}.upsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.bias")
if f"{prefix_from}.block.2.norm1.weight" in old_state_dict:
new_state_dict[f"{prefix_to}.resnets.2.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.weight")
new_state_dict[f"{prefix_to}.resnets.2.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.bias")
new_state_dict[f"{prefix_to}.resnets.2.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.weight")
new_state_dict[f"{prefix_to}.resnets.2.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.bias")
new_state_dict[f"{prefix_to}.resnets.2.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.weight")
new_state_dict[f"{prefix_to}.resnets.2.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.bias")
new_state_dict[f"{prefix_to}.resnets.2.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.weight")
new_state_dict[f"{prefix_to}.resnets.2.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.bias")
# fmt: on
if __name__ == "__main__":
main()