svjack commited on
Commit
4745026
·
1 Parent(s): 92027d2

Upload with huggingface_hub

Browse files
Files changed (5) hide show
  1. ._predict.py +0 -0
  2. ._requirements.txt +0 -0
  3. app.py +79 -0
  4. predict.py +47 -0
  5. requirements.txt +2 -0
._predict.py ADDED
Binary file (212 Bytes). View file
 
._requirements.txt ADDED
Binary file (212 Bytes). View file
 
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #from summary_reverse_pred_native import *
2
+ #### daspartho/prompt-extend
3
+
4
+ import gradio as gr
5
+ import os
6
+ from predict import *
7
+
8
+ #device = "cuda:0"
9
+ device = "cpu"
10
+ assert device.startswith("cpu") or device.startswith("cuda")
11
+
12
+ from transformers import (
13
+ T5ForConditionalGeneration,
14
+ MT5ForConditionalGeneration,
15
+ ByT5Tokenizer,
16
+ PreTrainedTokenizer,
17
+ T5TokenizerFast as T5Tokenizer,
18
+ MT5TokenizerFast as MT5Tokenizer,
19
+ AutoModelForSeq2SeqLM,
20
+ AutoTokenizer,
21
+ BertTokenizer,
22
+ GPT2LMHeadModel,
23
+ )
24
+
25
+ #### "svjack/prompt-extend-chinese-gpt"
26
+ #model_path = "/home/featurize/zh_p_extend_outputs/simplet5-epoch-3-train-loss-1.2628-val-loss-1.6293"
27
+ model_path = "svjack/prompt-extend-chinese-gpt"
28
+ tokenizer1 = BertTokenizer.from_pretrained(model_path)
29
+ model1 = GPT2LMHeadModel.from_pretrained(model_path)
30
+
31
+ if device.startswith("cuda"):
32
+ zh_pe_model = Obj(model1, tokenizer1, device = "cuda:0")
33
+ else:
34
+ zh_pe_model = Obj(model1, tokenizer1, device = "cpu")
35
+
36
+ def one_ele_trans(x):
37
+ x = x.strip()
38
+ x = x[1:] if x.startswith("'") else x
39
+ x = x[:-1] if x.endswith("'") else x
40
+ x = x[1:] if x.startswith('"') else x
41
+ x = x[:-1] if x.endswith('"') else x
42
+ return x
43
+
44
+ def stdf_prompt_expander(x, do_sample):
45
+ assert type(x) == type("")
46
+ return zh_pe_model.predict(
47
+ one_ele_trans(x.strip()).strip(),
48
+ max_length = 128,
49
+ do_sample = do_sample
50
+ )[0].replace(" ", "").strip()
51
+
52
+ #text0 = "飓风格特是1993年9月在墨西哥和整个中美洲引发严重洪灾的大规模热带气旋,源于9月14日西南加勒比海上空一股东风波。次日从尼加拉瓜登岸,经过洪都拉斯后于9月17日在洪都拉斯湾再次达到热带风暴标准,但次日进入伯利兹上空后就减弱成热带低气压。穿过尤卡坦半岛后,在9月20日强化成二级飓风,从韦拉克鲁斯州的图斯潘附近登陆墨西哥。9月21日从纳亚里特州进入太平洋时已降级成热带低气压,最终于5天后在开放水域上空消散。"
53
+ #text1 = "珊瑚坝是长江中的一处河漫滩,位于长江重庆市渝中区区段主航道左侧[1],靠近渝中半岛,原分属重庆市市中区菜园坝街道和石板坡街道[2],现属渝中区菜园坝街道石板坡社区[3],是长江上游缓冲地段自然冲积沙洲,略呈纺锤形[4]或椭圆形,长约1800米,宽约600米,坝上遍布鹅卵石和水草。每年夏季洪水时均被淹没,其余时间常露水面,枯水期则与长江左岸相连[5]。"
54
+ prompt = "一只凶猛的老虎,咬死了一只豺狼。"
55
+
56
+ example_sample = [
57
+ [prompt, False],
58
+ #[text1, False],
59
+ ]
60
+
61
+ def demo_func(prefix, do_sample):
62
+ #l = simple_pred(prefix, do_sample = do_sample)
63
+ x = stdf_prompt_expander(prefix, do_sample = do_sample)
64
+ return {
65
+ "Prompt extend": x
66
+ }
67
+
68
+ demo = gr.Interface(
69
+ fn=demo_func,
70
+ inputs=[gr.Text(label = "Prompt"),
71
+ gr.Checkbox(label="do sample"),
72
+ ],
73
+ outputs="json",
74
+ title=f"Stable Diffusion Chinese Prompt Extend 🐰 demonstration",
75
+ examples=example_sample if example_sample else None,
76
+ cache_examples = False
77
+ )
78
+
79
+ demo.launch(server_name=None, server_port=None)
predict.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Obj:
2
+ def __init__(self, model, tokenizer, device = "cpu"):
3
+ self.model = model
4
+ self.tokenizer = tokenizer
5
+ self.device = device
6
+ self.model = self.model.to(self.device)
7
+
8
+ def predict(
9
+ self,
10
+ source_text: str,
11
+ max_length: int = 512,
12
+ num_return_sequences: int = 1,
13
+ num_beams: int = 2,
14
+ top_k: int = 50,
15
+ top_p: float = 0.95,
16
+ do_sample: bool = True,
17
+ repetition_penalty: float = 2.5,
18
+ length_penalty: float = 1.0,
19
+ early_stopping: bool = True,
20
+ skip_special_tokens: bool = True,
21
+ clean_up_tokenization_spaces: bool = True,
22
+ ):
23
+ input_ids = self.tokenizer.encode(
24
+ source_text, return_tensors="pt", add_special_tokens=True
25
+ )
26
+ input_ids = input_ids.to(self.device)
27
+ generated_ids = self.model.generate(
28
+ input_ids=input_ids,
29
+ num_beams=num_beams,
30
+ max_length=max_length,
31
+ repetition_penalty=repetition_penalty,
32
+ length_penalty=length_penalty,
33
+ early_stopping=early_stopping,
34
+ top_p=top_p,
35
+ top_k=top_k,
36
+ num_return_sequences=num_return_sequences,
37
+ do_sample = do_sample
38
+ )
39
+ preds = [
40
+ self.tokenizer.decode(
41
+ g,
42
+ skip_special_tokens=skip_special_tokens,
43
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
44
+ )
45
+ for g in generated_ids
46
+ ]
47
+ return preds
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ transformers