sylaork commited on
Commit
153b6f3
·
verified ·
1 Parent(s): 944d91f

Upload Araba_fiyat_tahmin.py

Browse files
Files changed (1) hide show
  1. Araba_fiyat_tahmin.py +135 -0
Araba_fiyat_tahmin.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[20]:
5
+
6
+
7
+ import pandas as pd
8
+ from sklearn.model_selection import train_test_split
9
+ from sklearn.linear_model import LinearRegression
10
+ from sklearn.metrics import mean_squared_error, r2_score
11
+ from sklearn.compose import ColumnTransformer
12
+ from sklearn.preprocessing import OneHotEncoder,StandardScaler
13
+ from sklearn.pipeline import Pipeline
14
+
15
+
16
+ # In[21]:
17
+
18
+
19
+ df=pd.read_excel('cars.xls')
20
+ df.head()
21
+
22
+
23
+ # In[22]:
24
+
25
+
26
+ pip install xlrd
27
+
28
+
29
+ # In[23]:
30
+
31
+
32
+ X=df.drop('Price', axis=1)
33
+ y=df['Price']
34
+
35
+
36
+ # In[24]:
37
+
38
+
39
+ X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
40
+
41
+
42
+ # In[25]:
43
+
44
+
45
+ #!pip install ydata-profiling
46
+
47
+
48
+ # In[26]:
49
+
50
+
51
+ #import ydata_profiling
52
+
53
+
54
+ # In[27]:
55
+
56
+
57
+ #df.profile_report()
58
+
59
+
60
+ # In[28]:
61
+
62
+
63
+ preprocess=ColumnTransformer(transformers=[
64
+ ('num',StandardScaler(),['Mileage','Cylinder','Liter','Doors']),
65
+ ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
66
+
67
+
68
+ # Veri önişlemedeki standartlaşma ve one-hot kodlama işlemlerini otomatikleştiriyoruz.
69
+ # Artık preprocess kullanarak kullanıcıdan gelen veriyi modelimize uygun girdi haline dçnüştürebiliriz.
70
+
71
+ # In[31]:
72
+
73
+
74
+ model=LinearRegression()
75
+ pipe=Pipeline(steps=[('preprocesor', preprocess), ('model', model)])
76
+
77
+
78
+ # In[32]:
79
+
80
+
81
+ pipe.fit(X_train, y_train)
82
+
83
+
84
+ # In[33]:
85
+
86
+
87
+ y_pred=pipe.predict(X_test)
88
+ mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
89
+
90
+
91
+ # In[ ]:
92
+
93
+
94
+ import streamlit as st
95
+ def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
96
+ input_data=pd.DataFrame({
97
+ 'Make':[make],
98
+ 'Model':[model],
99
+ 'Trim':[trim],
100
+ 'Mileage':[mileage],
101
+ 'Type':[car_type],
102
+ 'Car_type':[car_type],
103
+ 'Cylinder':[cylinder],
104
+ 'Liter':[liter],
105
+ 'Doors':[doors],
106
+ 'Cruise':[cruise],
107
+ 'Sound':[sound],
108
+ 'Leather':[leather]
109
+ })
110
+ prediction=pipe.predict(input_data)[0]
111
+ return prediction
112
+ st.title("Car Price Prediction :red_car: @drmurataltun")
113
+ st.write("Enter Car Details to predict the price of the car")
114
+ make=st.selectbox("Make",df['Make'].unique())
115
+ model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
116
+ trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
117
+ mileage=st.number_input("Mileage",200,60000)
118
+ car_type=st.selectbox("Type",df['Type'].unique())
119
+ cylinder=st.selectbox("Cylinder",df['Cylinder'].unique())
120
+ liter=st.number_input("Liter",1,6)
121
+ doors=st.selectbox("Doors",df['Doors'].unique())
122
+ cruise=st.radio("Cruise",[True,False])
123
+ sound=st.radio("Sound",[True,False])
124
+ leather=st.radio("Leather",[True,False])
125
+ if st.button("Predict"):
126
+ pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
127
+
128
+ st.write("Predicted Price :red_car: $",round(pred[0],2))
129
+
130
+
131
+ # In[ ]:
132
+
133
+
134
+
135
+