Spaces:
Sleeping
Sleeping
Upload Araba_fiyat_tahmin.py
Browse files- Araba_fiyat_tahmin.py +135 -0
Araba_fiyat_tahmin.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[20]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.linear_model import LinearRegression
|
10 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
11 |
+
from sklearn.compose import ColumnTransformer
|
12 |
+
from sklearn.preprocessing import OneHotEncoder,StandardScaler
|
13 |
+
from sklearn.pipeline import Pipeline
|
14 |
+
|
15 |
+
|
16 |
+
# In[21]:
|
17 |
+
|
18 |
+
|
19 |
+
df=pd.read_excel('cars.xls')
|
20 |
+
df.head()
|
21 |
+
|
22 |
+
|
23 |
+
# In[22]:
|
24 |
+
|
25 |
+
|
26 |
+
pip install xlrd
|
27 |
+
|
28 |
+
|
29 |
+
# In[23]:
|
30 |
+
|
31 |
+
|
32 |
+
X=df.drop('Price', axis=1)
|
33 |
+
y=df['Price']
|
34 |
+
|
35 |
+
|
36 |
+
# In[24]:
|
37 |
+
|
38 |
+
|
39 |
+
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)
|
40 |
+
|
41 |
+
|
42 |
+
# In[25]:
|
43 |
+
|
44 |
+
|
45 |
+
#!pip install ydata-profiling
|
46 |
+
|
47 |
+
|
48 |
+
# In[26]:
|
49 |
+
|
50 |
+
|
51 |
+
#import ydata_profiling
|
52 |
+
|
53 |
+
|
54 |
+
# In[27]:
|
55 |
+
|
56 |
+
|
57 |
+
#df.profile_report()
|
58 |
+
|
59 |
+
|
60 |
+
# In[28]:
|
61 |
+
|
62 |
+
|
63 |
+
preprocess=ColumnTransformer(transformers=[
|
64 |
+
('num',StandardScaler(),['Mileage','Cylinder','Liter','Doors']),
|
65 |
+
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
|
66 |
+
|
67 |
+
|
68 |
+
# Veri önişlemedeki standartlaşma ve one-hot kodlama işlemlerini otomatikleştiriyoruz.
|
69 |
+
# Artık preprocess kullanarak kullanıcıdan gelen veriyi modelimize uygun girdi haline dçnüştürebiliriz.
|
70 |
+
|
71 |
+
# In[31]:
|
72 |
+
|
73 |
+
|
74 |
+
model=LinearRegression()
|
75 |
+
pipe=Pipeline(steps=[('preprocesor', preprocess), ('model', model)])
|
76 |
+
|
77 |
+
|
78 |
+
# In[32]:
|
79 |
+
|
80 |
+
|
81 |
+
pipe.fit(X_train, y_train)
|
82 |
+
|
83 |
+
|
84 |
+
# In[33]:
|
85 |
+
|
86 |
+
|
87 |
+
y_pred=pipe.predict(X_test)
|
88 |
+
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
|
89 |
+
|
90 |
+
|
91 |
+
# In[ ]:
|
92 |
+
|
93 |
+
|
94 |
+
import streamlit as st
|
95 |
+
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
|
96 |
+
input_data=pd.DataFrame({
|
97 |
+
'Make':[make],
|
98 |
+
'Model':[model],
|
99 |
+
'Trim':[trim],
|
100 |
+
'Mileage':[mileage],
|
101 |
+
'Type':[car_type],
|
102 |
+
'Car_type':[car_type],
|
103 |
+
'Cylinder':[cylinder],
|
104 |
+
'Liter':[liter],
|
105 |
+
'Doors':[doors],
|
106 |
+
'Cruise':[cruise],
|
107 |
+
'Sound':[sound],
|
108 |
+
'Leather':[leather]
|
109 |
+
})
|
110 |
+
prediction=pipe.predict(input_data)[0]
|
111 |
+
return prediction
|
112 |
+
st.title("Car Price Prediction :red_car: @drmurataltun")
|
113 |
+
st.write("Enter Car Details to predict the price of the car")
|
114 |
+
make=st.selectbox("Make",df['Make'].unique())
|
115 |
+
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
|
116 |
+
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
|
117 |
+
mileage=st.number_input("Mileage",200,60000)
|
118 |
+
car_type=st.selectbox("Type",df['Type'].unique())
|
119 |
+
cylinder=st.selectbox("Cylinder",df['Cylinder'].unique())
|
120 |
+
liter=st.number_input("Liter",1,6)
|
121 |
+
doors=st.selectbox("Doors",df['Doors'].unique())
|
122 |
+
cruise=st.radio("Cruise",[True,False])
|
123 |
+
sound=st.radio("Sound",[True,False])
|
124 |
+
leather=st.radio("Leather",[True,False])
|
125 |
+
if st.button("Predict"):
|
126 |
+
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
|
127 |
+
|
128 |
+
st.write("Predicted Price :red_car: $",round(pred[0],2))
|
129 |
+
|
130 |
+
|
131 |
+
# In[ ]:
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|