HalteroXHunter commited on
Commit
12c1471
·
1 Parent(s): f8130b1

update info

Browse files
Files changed (1) hide show
  1. absa_evaluator.py +13 -9
absa_evaluator.py CHANGED
@@ -12,29 +12,33 @@ _CITATION = """
12
  """
13
 
14
  _DESCRIPTION = """
15
- Evaluation metrics for Aspect-Based Sentiment Analysis (ABSA) including precision, recall, and F1 score for aspect terms and polarities.
 
 
 
16
  """
17
 
18
  _KWARGS_DESCRIPTION = """
19
- Computes precision, recall, and F1 score for aspect terms and polarities in Aspect-Based Sentiment Analysis (ABSA).
20
 
21
  Args:
22
  predictions: List of ABSA predictions with the following structure:
23
  - 'aspects': Sequence of aspect annotations, each with the following keys:
24
  - 'term': Aspect term
25
  - 'polarity': Polarity of the aspect term
 
 
 
26
  references: List of ABSA references with the same structure as predictions.
27
  Returns:
28
- aspect_precision: Precision score for aspect terms
29
- aspect_recall: Recall score for aspect terms
30
- aspect_f1: F1 score for aspect terms
31
- polarity_precision: Precision score for aspect polarities
32
- polarity_recall: Recall score for aspect polarities
33
- polarity_f1: F1 score for aspect polarities
34
  """
35
 
36
 
37
- class AbsaEvaluatorTest(evaluate.Metric):
38
  def _info(self):
39
  return evaluate.MetricInfo(
40
  description=_DESCRIPTION,
 
12
  """
13
 
14
  _DESCRIPTION = """
15
+ This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA).
16
+ The metrics include precision, recall, and F1 score for both aspect terms and category detection.
17
+ Additionally it calculates de accuracy for polarities from aspect terms and category detection.
18
+ ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
19
  """
20
 
21
  _KWARGS_DESCRIPTION = """
22
+ Computes precision, recall, and F1 score for aspect terms and category detection in Aspect-Based Sentiment Analysis (ABSA). Also calculates de accuracy for polarities on each task.
23
 
24
  Args:
25
  predictions: List of ABSA predictions with the following structure:
26
  - 'aspects': Sequence of aspect annotations, each with the following keys:
27
  - 'term': Aspect term
28
  - 'polarity': Polarity of the aspect term
29
+ - 'category': Sequence of category annotations, each with the following keys:
30
+ - 'category': Category
31
+ - 'polarity': polarity of the category
32
  references: List of ABSA references with the same structure as predictions.
33
  Returns:
34
+ term_extraction_results: f1 score, precision and recall for aspect terms
35
+ term_polarity_results_accuracy: accuracy for polarities on aspect terms
36
+ category_detection_results: f1 score, precision and recall for category detection
37
+ category_polarity_results_accuracy: accuracy for polarities on categories
 
 
38
  """
39
 
40
 
41
+ class AbsaEvaluator(evaluate.Metric):
42
  def _info(self):
43
  return evaluate.MetricInfo(
44
  description=_DESCRIPTION,