HalteroXHunter commited on
Commit
14fb1c1
·
1 Parent(s): b4d43c1
Files changed (1) hide show
  1. absa_evaluator.py +32 -52
absa_evaluator.py CHANGED
@@ -171,29 +171,42 @@ class AbsaEvaluator(evaluate.Metric):
171
  "relevant": relevant,
172
  }
173
 
174
- def adjust_predictions(refs, preds, choices):
 
 
175
  """Adjust predictions to match the length of references with either a special token or random choice."""
176
  adjusted_preds = []
177
  for ref, pred in zip(refs, preds):
178
  if len(pred) < len(ref):
179
  missing_count = len(ref) - len(pred)
180
  pred.extend([choice(choices) for _ in range(missing_count)])
 
 
181
  adjusted_preds.append(pred)
182
  return adjusted_preds
183
 
184
 
185
- def extract_aspects(data, specific_key, specific_val):
 
 
186
  """Extracts and returns a list of specified aspect details from the nested 'aspects' data."""
187
  return [item[specific_key][specific_val] for item in data]
188
 
189
 
190
- def absa_term_preprocess(references, predictions, subtask_key, subtask_value):
 
 
 
 
 
191
  """
192
  Preprocess the terms and polarities for aspect-based sentiment analysis.
193
 
194
  Args:
195
  references (List[Dict]): A list of dictionaries containing the actual terms and polarities under 'aspects'.
196
  predictions (List[Dict]): A list of dictionaries containing predicted aspect categories to terms and their sentiments.
 
 
197
 
198
  Returns:
199
  Tuple[List[str], List[str], List[str], List[str]]: A tuple containing lists of true aspect terms,
@@ -208,12 +221,7 @@ def absa_term_preprocess(references, predictions, subtask_key, subtask_value):
208
 
209
  # Define adjustment parameters
210
  special_token = "NONE" # For missing aspect terms
211
- sentiment_choices = [
212
- "positive",
213
- "negative",
214
- "neutral",
215
- "conflict",
216
- ] # For missing polarities
217
 
218
  # Adjust the predictions to match the length of references
219
  adjusted_pred_terms = adjust_predictions(
@@ -235,48 +243,20 @@ def flatten_list(nested_list):
235
  """Flatten a nested list into a single-level list."""
236
  return list(chain.from_iterable(nested_list))
237
 
 
 
 
238
 
239
- def extract_pred_terms(
240
- all_predictions: List[Dict[str, Dict[str, str]]]
241
- ) -> List[List]:
242
- """Extract and organize predicted terms from the sentiment analysis results."""
243
- pred_aspect_terms = []
244
- for pred in all_predictions:
245
- terms = [term for cat in pred.values() for term in cat.keys()]
246
- pred_aspect_terms.append(terms)
247
- return pred_aspect_terms
248
-
249
-
250
- def merge_aspects_and_categories(aspects, categories):
251
- result = []
252
-
253
- # Assuming both lists are of the same length and corresponding indices match
254
- for aspect, category in zip(aspects, categories):
255
- combined_entry = {
256
- "aspects": {"term": [], "polarity": []},
257
- "category": {"category": [], "polarity": []},
258
- }
259
-
260
- # Process aspect entries
261
- for cat_key, terms_dict in aspect.items():
262
- for term, polarity in terms_dict.items():
263
- combined_entry["aspects"]["term"].append(term)
264
- combined_entry["aspects"]["polarity"].append(polarity)
265
-
266
- # Add category details based on the aspect's key if available in categories
267
- if cat_key in category:
268
- combined_entry["category"]["category"].append(cat_key)
269
- combined_entry["category"]["polarity"].append(
270
- category[cat_key]
271
- )
272
-
273
- # Ensure all keys in category are accounted for
274
- for cat_key, polarity in category.items():
275
- if cat_key not in combined_entry["category"]["category"]:
276
- combined_entry["category"]["category"].append(cat_key)
277
- combined_entry["category"]["polarity"].append(polarity)
278
-
279
- result.append(combined_entry)
280
-
281
- return result
282
 
 
 
 
 
 
 
 
 
 
 
 
171
  "relevant": relevant,
172
  }
173
 
174
+ def adjust_predictions(
175
+ refs: List[List[Any]], preds: List[List[Any]], choices: List[Any]
176
+ ) -> List[List[Any]]:
177
  """Adjust predictions to match the length of references with either a special token or random choice."""
178
  adjusted_preds = []
179
  for ref, pred in zip(refs, preds):
180
  if len(pred) < len(ref):
181
  missing_count = len(ref) - len(pred)
182
  pred.extend([choice(choices) for _ in range(missing_count)])
183
+ elif len(pred) > len(ref):
184
+ pred = pred[:len(ref)]
185
  adjusted_preds.append(pred)
186
  return adjusted_preds
187
 
188
 
189
+ def extract_aspects(
190
+ data: List[Dict[str, Dict[str, Any]]], specific_key: str, specific_val: str
191
+ ) -> List[List[Any]]:
192
  """Extracts and returns a list of specified aspect details from the nested 'aspects' data."""
193
  return [item[specific_key][specific_val] for item in data]
194
 
195
 
196
+ def absa_term_preprocess(
197
+ references: List[Dict[str, Any]],
198
+ predictions: List[Dict[str, Any]],
199
+ subtask_key: str,
200
+ subtask_value: str,
201
+ ) -> Tuple[List[str], List[str], List[str], List[str]]:
202
  """
203
  Preprocess the terms and polarities for aspect-based sentiment analysis.
204
 
205
  Args:
206
  references (List[Dict]): A list of dictionaries containing the actual terms and polarities under 'aspects'.
207
  predictions (List[Dict]): A list of dictionaries containing predicted aspect categories to terms and their sentiments.
208
+ subtask_key (str): The key under which aspects are stored.
209
+ subtask_value (str): The specific aspect value to extract.
210
 
211
  Returns:
212
  Tuple[List[str], List[str], List[str], List[str]]: A tuple containing lists of true aspect terms,
 
221
 
222
  # Define adjustment parameters
223
  special_token = "NONE" # For missing aspect terms
224
+ sentiment_choices = unique_strings(flatten_list(truth_polarities))
 
 
 
 
 
225
 
226
  # Adjust the predictions to match the length of references
227
  adjusted_pred_terms = adjust_predictions(
 
243
  """Flatten a nested list into a single-level list."""
244
  return list(chain.from_iterable(nested_list))
245
 
246
+ def unique_strings(strings: List[str]) -> List[str]:
247
+ """
248
+ Convert a list of strings to a list of unique strings, preserving the original order.
249
 
250
+ Args:
251
+ strings (List[str]): The input list of strings.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252
 
253
+ Returns:
254
+ List[str]: A list of unique strings in the order of their first occurrence.
255
+ """
256
+ seen = set()
257
+ unique_list = []
258
+ for string in strings:
259
+ if string not in seen:
260
+ seen.add(string)
261
+ unique_list.append(string)
262
+ return unique_list