HalteroXHunter commited on
Commit
f1e80f2
·
1 Parent(s): d576847

included examples in description

Browse files
Files changed (1) hide show
  1. absa_evaluator.py +17 -2
absa_evaluator.py CHANGED
@@ -14,7 +14,7 @@ _CITATION = """
14
  _DESCRIPTION = """
15
  This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA).
16
  The metrics include precision, recall, and F1 score for both aspect terms and category detection.
17
- Additionally it calculates de accuracy for polarities from aspect terms and category detection.
18
  ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
19
  """
20
 
@@ -30,6 +30,21 @@ Args:
30
  - 'category': Category
31
  - 'polarity': polarity of the category
32
  references: List of ABSA references with the same structure as predictions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  Returns:
34
  term_extraction_results: f1 score, precision and recall for aspect terms
35
  term_polarity_results_accuracy: accuracy for polarities on aspect terms
@@ -144,7 +159,7 @@ class AbsaEvaluator(evaluate.Metric):
144
  Returns:
145
  - A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
146
 
147
- link for code: link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
148
  """
149
  b = 1
150
  common, relevant, retrieved = 0.0, 0.0, 0.0
 
14
  _DESCRIPTION = """
15
  This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA).
16
  The metrics include precision, recall, and F1 score for both aspect terms and category detection.
17
+ Additionally it calculates the accuracy for polarities from aspect terms and category detection.
18
  ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
19
  """
20
 
 
30
  - 'category': Category
31
  - 'polarity': polarity of the category
32
  references: List of ABSA references with the same structure as predictions.
33
+
34
+ Examples for predictions:
35
+ [
36
+ {
37
+ "aspects": [
38
+ {"term": "battery life", "polarity": "positive"},
39
+ {"term": "camera", "polarity": "negative"}
40
+ ],
41
+ "category": [
42
+ {"category": "Battery", "polarity": "positive"},
43
+ {"category": "Camera", "polarity": "negative"}
44
+ ]
45
+ }
46
+ ]
47
+
48
  Returns:
49
  term_extraction_results: f1 score, precision and recall for aspect terms
50
  term_polarity_results_accuracy: accuracy for polarities on aspect terms
 
159
  Returns:
160
  - A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
161
 
162
+ link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
163
  """
164
  b = 1
165
  common, relevant, retrieved = 0.0, 0.0, 0.0