Spaces:
Sleeping
Sleeping
HalteroXHunter
commited on
Commit
·
f1e80f2
1
Parent(s):
d576847
included examples in description
Browse files- absa_evaluator.py +17 -2
absa_evaluator.py
CHANGED
@@ -14,7 +14,7 @@ _CITATION = """
|
|
14 |
_DESCRIPTION = """
|
15 |
This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA).
|
16 |
The metrics include precision, recall, and F1 score for both aspect terms and category detection.
|
17 |
-
Additionally it calculates
|
18 |
ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
|
19 |
"""
|
20 |
|
@@ -30,6 +30,21 @@ Args:
|
|
30 |
- 'category': Category
|
31 |
- 'polarity': polarity of the category
|
32 |
references: List of ABSA references with the same structure as predictions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
Returns:
|
34 |
term_extraction_results: f1 score, precision and recall for aspect terms
|
35 |
term_polarity_results_accuracy: accuracy for polarities on aspect terms
|
@@ -144,7 +159,7 @@ class AbsaEvaluator(evaluate.Metric):
|
|
144 |
Returns:
|
145 |
- A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
|
146 |
|
147 |
-
link for
|
148 |
"""
|
149 |
b = 1
|
150 |
common, relevant, retrieved = 0.0, 0.0, 0.0
|
|
|
14 |
_DESCRIPTION = """
|
15 |
This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA).
|
16 |
The metrics include precision, recall, and F1 score for both aspect terms and category detection.
|
17 |
+
Additionally it calculates the accuracy for polarities from aspect terms and category detection.
|
18 |
ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
|
19 |
"""
|
20 |
|
|
|
30 |
- 'category': Category
|
31 |
- 'polarity': polarity of the category
|
32 |
references: List of ABSA references with the same structure as predictions.
|
33 |
+
|
34 |
+
Examples for predictions:
|
35 |
+
[
|
36 |
+
{
|
37 |
+
"aspects": [
|
38 |
+
{"term": "battery life", "polarity": "positive"},
|
39 |
+
{"term": "camera", "polarity": "negative"}
|
40 |
+
],
|
41 |
+
"category": [
|
42 |
+
{"category": "Battery", "polarity": "positive"},
|
43 |
+
{"category": "Camera", "polarity": "negative"}
|
44 |
+
]
|
45 |
+
}
|
46 |
+
]
|
47 |
+
|
48 |
Returns:
|
49 |
term_extraction_results: f1 score, precision and recall for aspect terms
|
50 |
term_polarity_results_accuracy: accuracy for polarities on aspect terms
|
|
|
159 |
Returns:
|
160 |
- A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.
|
161 |
|
162 |
+
link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
|
163 |
"""
|
164 |
b = 1
|
165 |
common, relevant, retrieved = 0.0, 0.0, 0.0
|