Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,781 Bytes
7fd29ef fba733c 72a3853 fba733c 7fd29ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import gradio as gr
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from huggingface_hub import login
import spaces
import json
import matplotlib.pyplot as plt
import io
import base64
def check_environment():
required_vars = ["HF_TOKEN"]
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Missing required environment variables: {', '.join(missing_vars)}\n"
"Please set the HF_TOKEN environment variable with your Hugging Face token"
)
# Login to Hugging Face
check_environment()
login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
# Load model and processor (do this outside the inference function to avoid reloading)
base_model_path = (
"taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-XLarge-FullModel"
)
processor = AutoProcessor.from_pretrained(base_model_path)
model = MllamaForConditionalGeneration.from_pretrained(
base_model_path,
torch_dtype=torch.bfloat16,
device_map="cuda",
)
# model = PeftModel.from_pretrained(model, lora_weights_path)
model.tie_weights()
def describe_image_in_JSON(json_string):
try:
# First JSON decode
first_decode = json.loads(json_string)
# Second JSON decode - parse the actual data
final_data = json.loads(first_decode)
return final_data
except json.JSONDecodeError as e:
return f"Error parsing JSON: {str(e)}"
def create_color_palette_image(colors):
if not colors or not isinstance(colors, list):
return None
try:
# Validate color format
for color in colors:
if not isinstance(color, str) or not color.startswith("#"):
return None
# Create figure and axis
fig, ax = plt.subplots(figsize=(10, 2))
# Create rectangles for each color
for i, color in enumerate(colors):
ax.add_patch(plt.Rectangle((i, 0), 1, 1, facecolor=color))
# Set the view limits and aspect ratio
ax.set_xlim(0, len(colors))
ax.set_ylim(0, 1)
ax.set_xticks([])
ax.set_yticks([])
return fig # Return the matplotlib figure directly
except Exception as e:
print(f"Error creating color palette: {e}")
return None
@spaces.GPU
def inference(image):
if image is None:
return ["Please provide an image"] * 8
if not isinstance(image, Image.Image):
try:
image = Image.fromarray(image)
except Exception as e:
print(f"Image conversion error: {e}")
return ["Invalid image format"] * 8
# Prepare input
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe the image in JSON"},
],
}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
try:
# Move inputs to the correct device
inputs = processor(
image, input_text, add_special_tokens=False, return_tensors="pt"
).to(model.device)
# Clear CUDA cache after inference
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=2048)
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
print(f"Inference error: {e}")
return ["Error during inference"] * 8
# Decode output
result = processor.decode(output[0], skip_special_tokens=True)
print("DEBUG: Full decoded output:", result)
try:
json_str = result.strip().split("assistant\n")[1].strip()
print("DEBUG: Extracted JSON string after split:", json_str)
except Exception as e:
print("DEBUG: Error splitting response:", e)
return ["Error extracting JSON from response"] * 8 + [
"Failed to extract JSON",
"Error",
]
parsed_json = describe_image_in_JSON(json_str)
if parsed_json:
# Create color palette visualization
colors = parsed_json.get("color_palette", [])
color_image = create_color_palette_image(colors)
# Convert lists to proper format for Gradio JSON components
character_list = json.dumps(parsed_json.get("character_list", []))
object_list = json.dumps(parsed_json.get("object_list", []))
texture_details = json.dumps(parsed_json.get("texture_details", []))
return (
parsed_json.get("description", "Not available"),
parsed_json.get("scene_description", "Not available"),
character_list,
object_list,
texture_details,
parsed_json.get("lighting_details", "Not available"),
color_image,
json_str,
"", # Error box
"Analysis complete", # Status
)
return ["Error parsing response"] * 8 + ["Failed to parse JSON", "Error"]
# Update Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# BugsBunny-LLama-3.2-11B-Base-XLarge Demo")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
type="pil",
label="Upload Image",
elem_id="large-image",
)
submit_btn = gr.Button("Analyze Image", variant="primary")
# Updated examples
gr.Examples(
examples=[
"./examples/1.jpg",
"./examples/2.jpg",
"./examples/3.jpg",
"./examples/4.jpg",
"./examples/5.jpg",
"./examples/6.jpg",
"./examples/7.jpg",
"./examples/8.jpg",
"./examples/9.jpg",
],
inputs=image_input,
label="Example Images",
examples_per_page=5,
)
with gr.Tabs():
with gr.Tab("Structured Results"):
with gr.Column(scale=1):
description_output = gr.Textbox(
label="Description",
lines=4,
)
scene_output = gr.Textbox(
label="Scene Description",
lines=2,
)
characters_output = gr.JSON(
label="Characters",
)
objects_output = gr.JSON(
label="Objects",
)
textures_output = gr.JSON(
label="Texture Details",
)
lighting_output = gr.Textbox(
label="Lighting Details",
lines=2,
)
color_palette_output = gr.Plot(
label="Color Palette",
)
with gr.Tab("Raw Output"):
raw_output = gr.Textbox(
label="Raw JSON Response",
lines=25,
max_lines=30,
)
error_box = gr.Textbox(label="Error Messages", visible=False)
with gr.Row():
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
submit_btn.click(
fn=inference,
inputs=[image_input],
outputs=[
description_output,
scene_output,
characters_output,
objects_output,
textures_output,
lighting_output,
color_palette_output,
raw_output,
error_box,
status_text,
],
api_name="analyze",
)
demo.launch(share=True)
|