tahirsher's picture
Create app.py
6e04d22 verified
raw
history blame
6.56 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer, util
import PyPDF2
from docx import Document
from nltk.corpus import wordnet as wn
import nltk
import pandas as pd
# Ensure required resources are downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Load the tokenizer and model for sentence embeddings
@st.cache_resource
def load_model():
try:
tokenizer = AutoTokenizer.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
model = AutoModelForCausalLM.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Smaller, faster sentence embeddings model
st.success("Model loaded successfully!")
return tokenizer, model, sentence_model
except Exception as e:
st.error(f"Error loading models: {e}")
return None, None, None
# Extract text from a PDF file
def extract_text_from_pdf(pdf_file):
try:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
st.error(f"Error reading PDF: {e}")
return ""
# Extract text from a Word document
def extract_text_from_word(docx_file):
try:
doc = Document(docx_file)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
except Exception as e:
st.error(f"Error reading Word document: {e}")
return ""
# Optimized comparison using embeddings and matrix operations
def compare_sentences(doc1_sentences, doc2_sentences, sentence_model):
# Encode all sentences in batches to get embeddings
doc1_embeddings = sentence_model.encode(doc1_sentences, convert_to_tensor=True, batch_size=16)
doc2_embeddings = sentence_model.encode(doc2_sentences, convert_to_tensor=True, batch_size=16)
# Compute cosine similarity matrix between all pairs
similarity_matrix = util.pytorch_cos_sim(doc1_embeddings, doc2_embeddings)
# Extract pairs with similarity > threshold
threshold = 0.6 # Adjust this for stricter or looser matching
similar_sentences = []
for i, row in enumerate(similarity_matrix):
for j, score in enumerate(row):
if score >= threshold:
similar_sentences.append((i, j, score.item(), doc1_sentences[i], doc2_sentences[j]))
return similar_sentences
# Find similar words or synonyms between two sentences
def find_similar_words(sentence1, sentence2):
words1 = set(sentence1.split())
words2 = set(sentence2.split())
similar_words = []
for word1 in words1:
for word2 in words2:
if word1 == word2 or is_synonym(word1, word2):
similar_words.append((word1, word2))
return similar_words
# Check if two words are synonyms using WordNet
def is_synonym(word1, word2):
synonyms_word1 = set(lemma.name() for synset in wn.synsets(word1) for lemma in synset.lemmas())
synonyms_word2 = set(lemma.name() for synset in wn.synsets(word2) for lemma in synset.lemmas())
return len(synonyms_word1.intersection(synonyms_word2)) > 0
# Streamlit UI
def main():
st.title("Enhanced Comparative Analysis of Two Documents")
st.sidebar.header("Upload Files")
# Upload files
uploaded_file1 = st.sidebar.file_uploader("Upload the First Document (PDF/Word)", type=["pdf", "docx"])
uploaded_file2 = st.sidebar.file_uploader("Upload the Second Document (PDF/Word)", type=["pdf", "docx"])
if uploaded_file1 and uploaded_file2:
# Extract text from the uploaded documents
if uploaded_file1.name.endswith(".pdf"):
text1 = extract_text_from_pdf(uploaded_file1)
else:
text1 = extract_text_from_word(uploaded_file1)
if uploaded_file2.name.endswith(".pdf"):
text2 = extract_text_from_pdf(uploaded_file2)
else:
text2 = extract_text_from_word(uploaded_file2)
if not text1.strip():
st.error("The first document is empty or could not be read.")
return
if not text2.strip():
st.error("The second document is empty or could not be read.")
return
st.write("### Preview of Document 1:")
st.text(text1[:500]) # Display a preview of Document 1
st.write("### Preview of Document 2:")
st.text(text2[:500]) # Display a preview of Document 2
# Split text into sentences
doc1_sentences = text1.split('. ')
doc2_sentences = text2.split('. ')
# Limit sentences for testing purposes (optional)
doc1_sentences = doc1_sentences[:50] # Remove this line for full processing
doc2_sentences = doc2_sentences[:50] # Remove this line for full processing
# Load models
tokenizer, model, sentence_model = load_model()
if not sentence_model:
st.error("Failed to load the sentence embedding model.")
return
# Perform sentence comparison
st.info("Comparing sentences, this may take a moment...")
similar_sentences = compare_sentences(doc1_sentences, doc2_sentences, sentence_model)
# Display results
st.header("Comparative Analysis Results")
st.write(f"Number of sentences in Document 1: {len(doc1_sentences)}")
st.write(f"Number of sentences in Document 2: {len(doc2_sentences)}")
if similar_sentences:
st.success(f"Found {len(similar_sentences)} similar sentences!")
# Prepare table for similar words
table_data = []
for match in similar_sentences:
doc1_index, doc2_index, score, sent1, sent2 = match
similar_words = find_similar_words(sent1, sent2)
similar_words_str = ", ".join([f"({w1}, {w2})" for w1, w2 in similar_words])
table_data.append([f"Sentence {doc1_index + 1}", f"Sentence {doc2_index + 1}", score, similar_words_str])
# Create a DataFrame for display
comparison_df = pd.DataFrame(table_data, columns=["Document 1 Sentence", "Document 2 Sentence", "Similarity Score", "Similar Words/Synonyms"])
st.table(comparison_df)
else:
st.info("No significantly similar sentences found.")
else:
st.warning("Please upload two documents to compare.")
if __name__ == "__main__":
main()