taufiqdp commited on
Commit
5db8dc0
·
verified ·
1 Parent(s): 4aed53d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -2,26 +2,26 @@ import gradio as gr
2
  import numpy as np
3
  import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
14
  else:
15
  torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
18
  pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
27
  negative_prompt,
@@ -105,7 +105,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,7 +113,7 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
@@ -122,7 +122,7 @@ with gr.Blocks(css=css) as demo:
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
@@ -130,7 +130,7 @@ with gr.Blocks(css=css) as demo:
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
  gr.Examples(examples=examples, inputs=[prompt])
 
2
  import numpy as np
3
  import random
4
 
5
+ import spaces
6
+ from diffusers import AutoPipelineForText2Image
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
10
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
13
  else:
14
  torch_dtype = torch.float32
15
 
16
+ pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
17
+ pipe.load_lora_weights('enhanceaiteam/Flux-uncensored', weight_name='lora.safetensors')
18
  pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
 
24
+ @spaces.GPU
25
  def infer(
26
  prompt,
27
  negative_prompt,
 
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
+ value=1024,
109
  )
110
 
111
  height = gr.Slider(
 
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
+ value=1024,
117
  )
118
 
119
  with gr.Row():
 
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
+ value=3.5,
126
  )
127
 
128
  num_inference_steps = gr.Slider(
 
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
+ value=28,
134
  )
135
 
136
  gr.Examples(examples=examples, inputs=[prompt])