File size: 14,541 Bytes
66662af
 
 
dede4f0
b273b9d
a5c2203
1420ae0
66662af
 
 
a5c2203
dede4f0
0d3afce
66662af
 
7a97ac2
 
5193ca2
7a97ac2
 
 
 
 
 
 
 
1420ae0
 
0d3afce
8cf228f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d3afce
8cf228f
 
 
 
 
 
 
 
 
 
7a97ac2
8cf228f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d3afce
8cf228f
 
 
 
0d3afce
 
8cf228f
 
 
 
 
 
9bf11f8
8cf228f
9bf11f8
8cf228f
 
 
0d3afce
8cf228f
 
 
0d3afce
8cf228f
 
b273b9d
a5c2203
b273b9d
dede4f0
 
 
 
a5c2203
 
dede4f0
 
a5c2203
 
dede4f0
 
b273b9d
0c2d8eb
 
66662af
 
 
 
0d3afce
 
 
 
 
 
dede4f0
 
66662af
dede4f0
a5c2203
dede4f0
51bc66d
66662af
a5c2203
 
8cf228f
a5c2203
66662af
dede4f0
 
 
 
 
5af6059
dede4f0
66662af
a5c2203
 
 
1420ae0
66662af
1420ae0
dede4f0
 
0d3afce
 
 
 
 
 
a5c2203
 
 
8cf228f
a5c2203
1420ae0
 
dede4f0
a5c2203
 
 
 
8cf228f
a5c2203
c968ad4
b2f4808
 
8cf228f
 
 
 
 
 
 
 
 
b273b9d
 
0c2d8eb
a5c2203
8cf228f
a5c2203
 
 
 
 
 
 
dede4f0
 
a5c2203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dede4f0
8cf228f
9bf11f8
0d3afce
 
9bf11f8
 
 
5affde5
1420ae0
 
0d3afce
7fb5a3e
1420ae0
dede4f0
b273b9d
0d3afce
 
 
a5c2203
1420ae0
a5c2203
 
 
 
 
0d3afce
 
 
66ed500
bac319c
 
 
66ed500
bac319c
 
a5c2203
1420ae0
8cf228f
1420ae0
 
 
 
a5c2203
 
0d3afce
 
 
b273b9d
8cf228f
66662af
dede4f0
6f2f71c
b273b9d
 
 
 
 
8cf228f
5af6059
 
bac319c
9bf11f8
b273b9d
 
 
9bf11f8
5af6059
8cf228f
 
a5c2203
0d3afce
 
 
a5c2203
0d3afce
 
 
a5c2203
 
b273b9d
0d3afce
 
 
b273b9d
 
849eff4
 
8cf228f
849eff4
 
5193ca2
849eff4
 
a5c2203
 
 
b273b9d
 
1420ae0
66662af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cf228f
 
 
 
 
b273b9d
 
 
 
 
1420ae0
 
 
 
 
66662af
 
 
1420ae0
 
 
 
 
 
 
 
 
8cf228f
 
65428ae
 
 
8cf228f
 
 
 
 
65428ae
8cf228f
1420ae0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import argparse
import json
import os
import shutil
from collections import defaultdict
from tempfile import TemporaryDirectory
from typing import Dict, List, Optional, Set, Tuple

import torch

from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
from safetensors.torch import _find_shared_tensors, _is_complete, load_file, save_file


COMMIT_DESCRIPTION = """
This new file is equivalent to `pytorch_model.bin` but safe in the sense that
no arbitrary code can be put into it.

These files also happen to load much faster than their pytorch counterpart:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/safetensors_doc/en/speed.ipynb

The widgets on your model page will run using this model even if this is not merged
making sure the file actually works.
"""

ConversionResult = Tuple[List["CommitOperationAdd"], List[Tuple[str, "Exception"]]]


def _remove_duplicate_names(
    state_dict: Dict[str, torch.Tensor],
    *,
    preferred_names: List[str] = None,
    discard_names: List[str] = None,
) -> Dict[str, List[str]]:
    if preferred_names is None:
        preferred_names = []
    preferred_names = set(preferred_names)
    if discard_names is None:
        discard_names = []
    discard_names = set(discard_names)

    shareds = _find_shared_tensors(state_dict)
    to_remove = defaultdict(list)
    for shared in shareds:
        complete_names = set([name for name in shared if _is_complete(state_dict[name])])
        if not complete_names:
            if len(shared) == 1:
                # Force contiguous
                name = list(shared)[0]
                state_dict[name] = state_dict[name].clone()
                complete_names = {name}
            else:
                raise RuntimeError(
                    f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue."
                )

        keep_name = sorted(list(complete_names))[0]

        # Mecanism to preferentially select keys to keep
        # coming from the on-disk file to allow
        # loading models saved with a different choice
        # of keep_name
        preferred = complete_names.difference(discard_names)
        if preferred:
            keep_name = sorted(list(preferred))[0]

        if preferred_names:
            preferred = preferred_names.intersection(complete_names)
            if preferred:
                keep_name = sorted(list(preferred))[0]
        for name in sorted(shared):
            if name != keep_name:
                to_remove[keep_name].append(name)
    return to_remove


def get_discard_names(model_id: str, revision: Optional[str], folder: str, token: Optional[str]) -> List[str]:
    try:
        import json

        import transformers

        config_filename = hf_hub_download(
            model_id, revision=revision, filename="config.json", token=token, cache_dir=folder
        )
        with open(config_filename, "r") as f:
            config = json.load(f)
        architecture = config["architectures"][0]

        class_ = getattr(transformers, architecture)

        # Name for this varible depends on transformers version.
        discard_names = getattr(class_, "_tied_weights_keys", [])

    except Exception:
        discard_names = []
    return discard_names


class AlreadyExists(Exception):
    pass


def check_file_size(sf_filename: str, pt_filename: str):
    sf_size = os.stat(sf_filename).st_size
    pt_size = os.stat(pt_filename).st_size

    if (sf_size - pt_size) / pt_size > 0.01:
        raise RuntimeError(
            f"""The file size different is more than 1%:
         - {sf_filename}: {sf_size}
         - {pt_filename}: {pt_size}
         """
        )


def rename(pt_filename: str) -> str:
    filename, ext = os.path.splitext(pt_filename)
    local = f"{filename}.safetensors"
    local = local.replace("pytorch_model", "model")
    return local


def convert_multi(
    model_id: str, *, revision=Optional[str], folder: str, token: Optional[str], discard_names: List[str]
) -> ConversionResult:
    filename = hf_hub_download(
        repo_id=model_id, revision=revision, filename="pytorch_model.bin.index.json", token=token, cache_dir=folder
    )
    with open(filename, "r") as f:
        data = json.load(f)

    filenames = set(data["weight_map"].values())
    local_filenames = []
    for filename in filenames:
        pt_filename = hf_hub_download(repo_id=model_id, filename=filename, token=token, cache_dir=folder)

        sf_filename = rename(pt_filename)
        sf_filename = os.path.join(folder, sf_filename)
        convert_file(pt_filename, sf_filename, discard_names=discard_names)
        local_filenames.append(sf_filename)

    index = os.path.join(folder, "model.safetensors.index.json")
    with open(index, "w") as f:
        newdata = {k: v for k, v in data.items()}
        newmap = {k: rename(v) for k, v in data["weight_map"].items()}
        newdata["weight_map"] = newmap
        json.dump(newdata, f, indent=4)
    local_filenames.append(index)

    operations = [
        CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames
    ]
    errors: List[Tuple[str, "Exception"]] = []

    return operations, errors


def convert_single(
    model_id: str, *, revision: Optional[str], folder: str, token: Optional[str], discard_names: List[str]
) -> ConversionResult:
    pt_filename = hf_hub_download(
        repo_id=model_id, revision=revision, filename="pytorch_model.bin", token=token, cache_dir=folder
    )

    sf_name = "model.safetensors"
    sf_filename = os.path.join(folder, sf_name)
    convert_file(pt_filename, sf_filename, discard_names)
    operations = [CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=sf_filename)]
    errors: List[Tuple[str, "Exception"]] = []
    return operations, errors


def convert_file(
    pt_filename: str,
    sf_filename: str,
    discard_names: List[str],
):
    loaded = torch.load(pt_filename, map_location="cpu")
    if "state_dict" in loaded:
        loaded = loaded["state_dict"]
    to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)

    metadata = {"format": "pt"}
    for kept_name, to_remove_group in to_removes.items():
        for to_remove in to_remove_group:
            if to_remove not in metadata:
                metadata[to_remove] = kept_name
            del loaded[to_remove]
    # Force tensors to be contiguous
    loaded = {k: v.contiguous() for k, v in loaded.items()}

    dirname = os.path.dirname(sf_filename)
    os.makedirs(dirname, exist_ok=True)
    save_file(loaded, sf_filename, metadata=metadata)
    check_file_size(sf_filename, pt_filename)
    reloaded = load_file(sf_filename)
    for k in loaded:
        pt_tensor = loaded[k]
        sf_tensor = reloaded[k]
        if not torch.equal(pt_tensor, sf_tensor):
            raise RuntimeError(f"The output tensors do not match for key {k}")


def create_diff(pt_infos: Dict[str, List[str]], sf_infos: Dict[str, List[str]]) -> str:
    errors = []
    for key in ["missing_keys", "mismatched_keys", "unexpected_keys"]:
        pt_set = set(pt_infos[key])
        sf_set = set(sf_infos[key])

        pt_only = pt_set - sf_set
        sf_only = sf_set - pt_set

        if pt_only:
            errors.append(f"{key} : PT warnings contain {pt_only} which are not present in SF warnings")
        if sf_only:
            errors.append(f"{key} : SF warnings contain {sf_only} which are not present in PT warnings")
    return "\n".join(errors)


def previous_pr(api: "HfApi", model_id: str, pr_title: str, revision=Optional[str]) -> Optional["Discussion"]:
    try:
        revision_commit = api.model_info(model_id, revision=revision).sha
        discussions = api.get_repo_discussions(repo_id=model_id)
    except Exception:
        return None
    for discussion in discussions:
        if discussion.status in {"open", "closed"} and discussion.is_pull_request and discussion.title == pr_title:
            commits = api.list_repo_commits(model_id, revision=discussion.git_reference)

            if revision_commit == commits[1].commit_id:
                return discussion
    return None


def convert_generic(
    model_id: str, *, revision=Optional[str], folder: str, filenames: Set[str], token: Optional[str]
) -> ConversionResult:
    operations = []
    errors = []

    extensions = set([".bin", ".ckpt"])
    for filename in filenames:
        prefix, ext = os.path.splitext(filename)
        if ext in extensions:
            pt_filename = hf_hub_download(
                model_id, revision=revision, filename=filename, token=token, cache_dir=folder
            )
            dirname, raw_filename = os.path.split(filename)
            if raw_filename == "pytorch_model.bin":
                # XXX: This is a special case to handle `transformers` and the
                # `transformers` part of the model which is actually loaded by `transformers`.
                sf_in_repo = os.path.join(dirname, "model.safetensors")
            else:
                sf_in_repo = f"{prefix}.safetensors"
            sf_filename = os.path.join(folder, sf_in_repo)
            try:
                convert_file(pt_filename, sf_filename, discard_names=[])
                operations.append(CommitOperationAdd(path_in_repo=sf_in_repo, path_or_fileobj=sf_filename))
            except Exception as e:
                errors.append((pt_filename, e))
    return operations, errors


def convert(
    api: "HfApi", model_id: str, revision: Optional[str] = None, force: bool = False
) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]:
    pr_title = "Adding `safetensors` variant of this model"
    info = api.model_info(model_id, revision=revision)
    filenames = set(s.rfilename for s in info.siblings)

    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder)
        new_pr = None
        try:
            operations = None
            pr = previous_pr(api, model_id, pr_title, revision=revision)

            library_name = getattr(info, "library_name", None)
            if any(filename.endswith(".safetensors") for filename in filenames) and not force:
                raise AlreadyExists(f"Model {model_id} is already converted, skipping..")
            elif pr is not None and not force:
                url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
                new_pr = pr
                raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
            elif library_name == "transformers":

                discard_names = get_discard_names(model_id, revision=revision, folder=folder, token=api.token)
                if "pytorch_model.bin" in filenames:
                    operations, errors = convert_single(
                        model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names
                    )
                elif "pytorch_model.bin.index.json" in filenames:
                    operations, errors = convert_multi(
                        model_id, revision=revision, folder=folder, token=api.token, discard_names=discard_names
                    )
                else:
                    raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert")
            else:
                operations, errors = convert_generic(
                    model_id, revision=revision, folder=folder, filenames=filenames, token=api.token
                )

            if operations:
                new_pr = api.create_commit(
                    repo_id=model_id,
                    revision=revision,
                    operations=operations,
                    commit_message=pr_title,
                    commit_description=COMMIT_DESCRIPTION,
                    create_pr=True,
                )
                print(f"Pr created at {new_pr.pr_url}")
            else:
                print("No files to convert")
        finally:
            shutil.rmtree(folder)
        return new_pr, errors


if __name__ == "__main__":
    DESCRIPTION = """
    Simple utility tool to convert automatically some weights on the hub to `safetensors` format.
    It is PyTorch exclusive for now.
    It works by downloading the weights (PT), converting them locally, and uploading them back
    as a PR on the hub.
    """
    parser = argparse.ArgumentParser(description=DESCRIPTION)
    parser.add_argument(
        "model_id",
        type=str,
        help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
    )
    parser.add_argument(
        "--revision",
        type=str,
        help="The revision to convert",
    )
    parser.add_argument(
        "--force",
        action="store_true",
        help="Create the PR even if it already exists of if the model was already converted.",
    )
    parser.add_argument(
        "-y",
        action="store_true",
        help="Ignore safety prompt",
    )
    args = parser.parse_args()
    model_id = args.model_id
    api = HfApi()
    if args.y:
        txt = "y"
    else:
        txt = input(
            "This conversion script will unpickle a pickled file, which is inherently unsafe. If you do not trust this file, we invite you to use"
            " https://huggingface.co/spaces/safetensors/convert or google colab or other hosted solution to avoid potential issues with this file."
            " Continue [Y/n] ?"
        )
    if txt.lower() in {"", "y"}:
        commit_info, errors = convert(api, model_id, revision=args.revision, force=args.force)
        string = f"""
### Success 🔥
Yay! This model was successfully converted and a PR was open using your token, here:
[{commit_info.pr_url}]({commit_info.pr_url})
        """
        if errors:
            string += "\nErrors during conversion:\n"
            string += "\n".join(
                f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors
            )
        print(string)
    else:
        print(f"Answer was `{txt}` aborting.")