Spaces:
Sleeping
Sleeping
import streamlit as st | |
from io import BytesIO | |
import ibm_watsonx_ai | |
import secretsload | |
import genparam | |
import requests | |
import time | |
import re | |
from ibm_watsonx_ai.foundation_models import ModelInference | |
from ibm_watsonx_ai import Credentials, APIClient | |
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams | |
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams | |
from secretsload import load_stsecrets | |
credentials = load_stsecrets() | |
st.set_page_config( | |
page_title="Jimmy", | |
page_icon="π", | |
initial_sidebar_state="collapsed" | |
) | |
# Password protection | |
def check_password(): | |
def password_entered(): | |
if st.session_state["password"] == st.secrets["app_password"]: | |
st.session_state["password_correct"] = True | |
del st.session_state["password"] | |
else: | |
st.session_state["password_correct"] = False | |
if "password_correct" not in st.session_state: | |
st.markdown("\n\n") | |
st.text_input("Enter the password", type="password", on_change=password_entered, key="password") | |
st.divider() | |
st.info("Developed by Milan Mrdenovic Β© IBM Norway 2024") | |
return False | |
elif not st.session_state["password_correct"]: | |
st.markdown("\n\n") | |
st.text_input("Enter the password", type="password", on_change=password_entered, key="password") | |
st.divider() | |
st.info("Developed by Milan Mrdenovic Β© IBM Norway 2024") | |
st.error("π Password incorrect") | |
return False | |
else: | |
return True | |
if not check_password(): | |
st.stop() | |
# Initialize session state | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = 0 | |
def initialize_session_state(): | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
def setup_client(): | |
credentials = Credentials( | |
url=st.secrets["url"], | |
api_key=st.secrets["api_key"] | |
) | |
return APIClient(credentials, project_id=st.secrets["project_id"]) | |
def prepare_prompt(prompt, chat_history): | |
if genparam.TYPE == "chat" and chat_history: | |
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history]) | |
return f"Conversation History:\n{chats}\n\nNew Message: {prompt}" | |
return prompt | |
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax): | |
model_family_syntax = { | |
"llama3-instruct (llama-3 & 3.1) - system": """\n<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""", | |
"llama3-instruct (llama-3 & 3.1) - user": """\n<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""", | |
"granite-13b-chat & instruct - system": """\n<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""", | |
"granite-13b-chat & instruct - user": """\n<|user|>\n{prompt}\n<|assistant|>\n\n""", | |
"llama2-chat - system": """\n[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt} [/INST] """, | |
"llama2-chat - user": """\n[INST] {prompt} [/INST] """, | |
"mistral & mixtral v2 tokenizer - system": """\n<s>[INST] System Prompt:[{system_prompt}]\n\n{prompt} [/INST] """, | |
"mistral & mixtral v2 tokenizer - user": """\n<s>[INST] {prompt} [/INST] """ | |
} | |
if bake_in_prompt_syntax: | |
template = model_family_syntax[prompt_template] | |
if system_prompt: | |
return template.format(system_prompt=system_prompt, prompt=prompt) | |
return prompt | |
def generate_response(watsonx_llm, prompt_data, params): | |
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params) | |
for chunk in generated_response: | |
yield chunk | |
def chat_interface(): | |
st.subheader("Jimmy") | |
# User input | |
user_input = st.chat_input("You:", key="user_input") | |
if user_input: | |
# Add user message to chat history | |
st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
# Prepare the prompt | |
prompt = prepare_prompt(user_input, st.session_state.chat_history) | |
# Apply prompt syntax | |
prompt_data = apply_prompt_syntax( | |
prompt, | |
genparam.SYSTEM_PROMPT, | |
genparam.PROMPT_TEMPLATE, | |
genparam.BAKE_IN_PROMPT_SYNTAX | |
) | |
# Setup client and model | |
client = setup_client() | |
watsonx_llm = ModelInference( | |
api_client=client, | |
model_id=genparam.SELECTED_MODEL, | |
verify=genparam.VERIFY | |
) | |
# Prepare parameters | |
params = { | |
GenParams.DECODING_METHOD: genparam.DECODING_METHOD, | |
GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS, | |
GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS, | |
GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY, | |
GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES | |
} | |
# Generate and stream response | |
with st.chat_message("Jimmy", avatar="π"): | |
stream = generate_response(watsonx_llm, prompt_data, params) | |
response = st.write_stream(stream) | |
# Add AI response to chat history | |
st.session_state.chat_history.append({"role": "Jimmy", "content": response}) | |
def main(): | |
initialize_session_state() | |
chat_interface() | |
if __name__ == "__main__": | |
main() |