tdecae commited on
Commit
2840d3f
·
verified ·
1 Parent(s): 98f45a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -84,9 +84,6 @@ import os
84
  import sys
85
  from langchain.chains import ConversationalRetrievalChain
86
  from langchain.document_loaders import DirectoryLoader, TextLoader
87
- from langchain.embeddings import HuggingFaceEmbeddings
88
- from langchain.indexes import VectorstoreIndexCreator
89
- from langchain.indexes.vectorstore import VectorStoreIndexWrapper
90
  from langchain.text_splitter import CharacterTextSplitter
91
  from langchain.vectorstores import Chroma
92
  import gradio as gr
@@ -115,10 +112,12 @@ for f in os.listdir("multiple_docs"):
115
  splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
116
  docs = splitter.split_documents(docs)
117
 
118
- # Convert the document chunks to embedding and save them to the vector store
119
  embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
120
- embeddings = HuggingFaceEmbeddings(embedding_model=embedding_model)
121
- vectorstore = Chroma.from_documents(docs, embedding=embeddings, persist_directory="./data")
 
 
122
  vectorstore.persist()
123
 
124
  # Load the Hugging Face model for text generation
@@ -171,3 +170,4 @@ demo.launch(debug=True)
171
 
172
 
173
 
 
 
84
  import sys
85
  from langchain.chains import ConversationalRetrievalChain
86
  from langchain.document_loaders import DirectoryLoader, TextLoader
 
 
 
87
  from langchain.text_splitter import CharacterTextSplitter
88
  from langchain.vectorstores import Chroma
89
  import gradio as gr
 
112
  splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
113
  docs = splitter.split_documents(docs)
114
 
115
+ # Convert the document chunks to embeddings
116
  embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
117
+ embeddings = [embedding_model.encode(doc.content) for doc in docs]
118
+
119
+ # Save the embeddings to the vector store
120
+ vectorstore = Chroma.from_embeddings(embeddings=embeddings, documents=docs, persist_directory="./data")
121
  vectorstore.persist()
122
 
123
  # Load the Hugging Face model for text generation
 
170
 
171
 
172
 
173
+