tdecae commited on
Commit
415fe71
·
verified ·
1 Parent(s): 089299b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -1
app.py CHANGED
@@ -89,6 +89,7 @@ from langchain.vectorstores import Chroma
89
  import gradio as gr
90
  from transformers import pipeline
91
  from sentence_transformers import SentenceTransformer
 
92
 
93
  __import__('pysqlite3')
94
  sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
@@ -115,7 +116,7 @@ docs = splitter.split_documents(docs)
115
  # Extract the content from documents and create embeddings
116
  embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
117
  texts = [doc.page_content for doc in docs]
118
- embeddings = embedding_model.encode(texts)
119
 
120
  # Create a Chroma vector store and add documents and their embeddings
121
  vectorstore = Chroma(persist_directory="./data")
@@ -175,3 +176,4 @@ demo.launch(debug=True)
175
 
176
 
177
 
 
 
89
  import gradio as gr
90
  from transformers import pipeline
91
  from sentence_transformers import SentenceTransformer
92
+ import numpy as np
93
 
94
  __import__('pysqlite3')
95
  sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
 
116
  # Extract the content from documents and create embeddings
117
  embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
118
  texts = [doc.page_content for doc in docs]
119
+ embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to lists
120
 
121
  # Create a Chroma vector store and add documents and their embeddings
122
  vectorstore = Chroma(persist_directory="./data")
 
176
 
177
 
178
 
179
+