Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,47 +8,74 @@ from langchain.embeddings import OpenAIEmbeddings
|
|
8 |
from langchain.indexes import VectorstoreIndexCreator
|
9 |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
10 |
from langchain.llms import OpenAI
|
|
|
11 |
|
12 |
__import__('pysqlite3')
|
13 |
import sys
|
14 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
15 |
|
16 |
from langchain.vectorstores import Chroma
|
|
|
17 |
|
18 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
chain = ConversationalRetrievalChain.from_llm(
|
40 |
-
|
41 |
-
|
|
|
|
|
42 |
)
|
43 |
|
44 |
chat_history = []
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from langchain.indexes import VectorstoreIndexCreator
|
9 |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
10 |
from langchain.llms import OpenAI
|
11 |
+
from langchain.text_splitter import CharacterTextSplitter
|
12 |
|
13 |
__import__('pysqlite3')
|
14 |
import sys
|
15 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
16 |
|
17 |
from langchain.vectorstores import Chroma
|
18 |
+
import gradio as gr
|
19 |
|
20 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
|
21 |
|
22 |
+
docs = []
|
23 |
+
|
24 |
+
for f in os.listdir("./"):
|
25 |
+
if f.endswith(".pdf"):
|
26 |
+
pdf_path = "./" + f
|
27 |
+
loader = PyPDFLoader(pdf_path)
|
28 |
+
docs.extend(loader.load())
|
29 |
+
elif f.endswith('.docx') or f.endswith('.doc'):
|
30 |
+
doc_path = "./" + f
|
31 |
+
loader = Docx2txtLoader(doc_path)
|
32 |
+
docs.extend(loader.load())
|
33 |
+
elif f.endswith('.txt'):
|
34 |
+
text_path = "./" + f
|
35 |
+
loader = TextLoader(text_path)
|
36 |
+
docs.extend(loader.load())
|
37 |
+
|
38 |
+
splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
39 |
+
docs = splitter.split_documents(docs)
|
40 |
+
|
41 |
+
# Convert the document chunks to embedding and save them to the vector store
|
42 |
+
vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data")
|
43 |
+
vectorstore.persist()
|
44 |
|
45 |
chain = ConversationalRetrievalChain.from_llm(
|
46 |
+
ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'),
|
47 |
+
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
48 |
+
return_source_documents=True,
|
49 |
+
verbose=False
|
50 |
)
|
51 |
|
52 |
chat_history = []
|
53 |
+
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment relaged questions such as my previous experience, where i'm eligible to work, when I can start work, my most recent experience, what NLP skills I have, and much more!")],avatar_images=["./input/avatar/Guest.jpg","./input/avatar/Thierry Picture.jpg"])
|
56 |
+
msg = gr.Textbox()
|
57 |
+
clear = gr.Button("Clear")
|
58 |
+
chat_history = []
|
59 |
+
|
60 |
+
def user(query, chat_history):
|
61 |
+
# print("User query:", query)
|
62 |
+
# print("Chat history:", chat_history)
|
63 |
+
|
64 |
+
# Convert chat history to list of tuples
|
65 |
+
chat_history_tuples = []
|
66 |
+
for message in chat_history:
|
67 |
+
chat_history_tuples.append((message[0], message[1]))
|
68 |
+
|
69 |
+
# Get result from QA chain
|
70 |
+
result = chain({"question": query, "chat_history": chat_history_tuples})
|
71 |
+
|
72 |
+
# Append user message and response to chat history
|
73 |
+
chat_history.append((query, result["answer"]))
|
74 |
+
# print("Updated chat history:", chat_history)
|
75 |
+
|
76 |
+
return gr.update(value=""), chat_history
|
77 |
+
|
78 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
79 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
80 |
+
|
81 |
+
demo.launch(debug=True)
|