Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -83,7 +83,7 @@
|
|
83 |
import os
|
84 |
import sys
|
85 |
from langchain.chains import ConversationalRetrievalChain
|
86 |
-
from langchain.document_loaders import
|
87 |
from langchain.text_splitter import CharacterTextSplitter
|
88 |
from langchain.vectorstores import Chroma
|
89 |
import gradio as gr
|
@@ -119,14 +119,7 @@ embeddings = embedding_model.encode(texts).tolist() # Convert numpy arrays to l
|
|
119 |
|
120 |
# Create a Chroma vector store and add documents and their embeddings
|
121 |
vectorstore = Chroma(persist_directory="./db")
|
122 |
-
vectorstore.add_texts(texts)
|
123 |
-
for i, embedding in enumerate(embeddings):
|
124 |
-
vectorstore._collection.upsert(
|
125 |
-
ids=[str(i)],
|
126 |
-
embeddings=[embedding],
|
127 |
-
metadatas=[{"id": i}],
|
128 |
-
documents=[texts[i]]
|
129 |
-
)
|
130 |
vectorstore.persist()
|
131 |
|
132 |
# Load the Hugging Face model for text generation
|
@@ -187,3 +180,4 @@ demo.launch(debug=True)
|
|
187 |
|
188 |
|
189 |
|
|
|
|
83 |
import os
|
84 |
import sys
|
85 |
from langchain.chains import ConversationalRetrievalChain
|
86 |
+
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
87 |
from langchain.text_splitter import CharacterTextSplitter
|
88 |
from langchain.vectorstores import Chroma
|
89 |
import gradio as gr
|
|
|
119 |
|
120 |
# Create a Chroma vector store and add documents and their embeddings
|
121 |
vectorstore = Chroma(persist_directory="./db")
|
122 |
+
vectorstore.add_texts(texts=texts, metadatas=[{"id": i} for i in range(len(texts))], embeddings=embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
vectorstore.persist()
|
124 |
|
125 |
# Load the Hugging Face model for text generation
|
|
|
180 |
|
181 |
|
182 |
|
183 |
+
|