Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import tensorflow_hub as hub
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
#@title Helper functions for loading image (hidden)
|
13 |
+
|
14 |
+
original_image_cache = {}
|
15 |
+
|
16 |
+
def preprocess_image(image):
|
17 |
+
image = np.array(image)
|
18 |
+
# reshape into shape [batch_size, height, width, num_channels]
|
19 |
+
img_reshaped = tf.reshape(image, [1, image.shape[0], image.shape[1], image.shape[2]])
|
20 |
+
# Use `convert_image_dtype` to convert to floats in the [0,1] range.
|
21 |
+
image = tf.image.convert_image_dtype(img_reshaped, tf.float32)
|
22 |
+
return image
|
23 |
+
|
24 |
+
def load_image_from_url(img_url):
|
25 |
+
"""Returns an image with shape [1, height, width, num_channels]."""
|
26 |
+
user_agent = {'User-agent': 'Colab Sample (https://tensorflow.org)'}
|
27 |
+
response = requests.get(img_url, headers=user_agent)
|
28 |
+
image = Image.open(BytesIO(response.content))
|
29 |
+
image = preprocess_image(image)
|
30 |
+
return image
|
31 |
+
|
32 |
+
def load_image(image_url, image_size=256, dynamic_size=False, max_dynamic_size=512):
|
33 |
+
"""Loads and preprocesses images."""
|
34 |
+
# Cache image file locally.
|
35 |
+
if image_url in original_image_cache:
|
36 |
+
img = original_image_cache[image_url]
|
37 |
+
elif image_url.startswith('https://'):
|
38 |
+
img = load_image_from_url(image_url)
|
39 |
+
else:
|
40 |
+
fd = tf.io.gfile.GFile(image_url, 'rb')
|
41 |
+
img = preprocess_image(Image.open(fd))
|
42 |
+
original_image_cache[image_url] = img
|
43 |
+
# Load and convert to float32 numpy array, add batch dimension, and normalize to range [0, 1].
|
44 |
+
img_raw = img
|
45 |
+
if tf.reduce_max(img) > 1.0:
|
46 |
+
img = img / 255.
|
47 |
+
if len(img.shape) == 3:
|
48 |
+
img = tf.stack([img, img, img], axis=-1)
|
49 |
+
if not dynamic_size:
|
50 |
+
img = tf.image.resize_with_pad(img, image_size, image_size)
|
51 |
+
elif img.shape[1] > max_dynamic_size or img.shape[2] > max_dynamic_size:
|
52 |
+
img = tf.image.resize_with_pad(img, max_dynamic_size, max_dynamic_size)
|
53 |
+
return img, img_raw
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
image_size = 224
|
58 |
+
dynamic_size = False
|
59 |
+
|
60 |
+
model_name = "efficientnet_b1"
|
61 |
+
|
62 |
+
model_handle_map = {
|
63 |
+
"efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
|
64 |
+
"efficientnetv2-m": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/classification/2",
|
65 |
+
"efficientnetv2-l": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/classification/2",
|
66 |
+
"efficientnetv2-s-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/classification/2",
|
67 |
+
"efficientnetv2-m-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/classification/2",
|
68 |
+
"efficientnetv2-l-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/classification/2",
|
69 |
+
"efficientnetv2-xl-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/classification/2",
|
70 |
+
"efficientnetv2-b0-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/classification/2",
|
71 |
+
"efficientnetv2-b1-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/classification/2",
|
72 |
+
"efficientnetv2-b2-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/classification/2",
|
73 |
+
"efficientnetv2-b3-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/classification/2",
|
74 |
+
"efficientnetv2-s-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/classification/2",
|
75 |
+
"efficientnetv2-m-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/classification/2",
|
76 |
+
"efficientnetv2-l-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/classification/2",
|
77 |
+
"efficientnetv2-xl-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/classification/2",
|
78 |
+
"efficientnetv2-b0-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/classification/2",
|
79 |
+
"efficientnetv2-b1-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/classification/2",
|
80 |
+
"efficientnetv2-b2-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/classification/2",
|
81 |
+
"efficientnetv2-b3-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/classification/2",
|
82 |
+
"efficientnetv2-b0": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/classification/2",
|
83 |
+
"efficientnetv2-b1": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/classification/2",
|
84 |
+
"efficientnetv2-b2": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/classification/2",
|
85 |
+
"efficientnetv2-b3": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/classification/2",
|
86 |
+
"efficientnet_b0": "https://tfhub.dev/tensorflow/efficientnet/b0/classification/1",
|
87 |
+
"efficientnet_b1": "https://tfhub.dev/tensorflow/efficientnet/b1/classification/1",
|
88 |
+
"efficientnet_b2": "https://tfhub.dev/tensorflow/efficientnet/b2/classification/1",
|
89 |
+
"efficientnet_b3": "https://tfhub.dev/tensorflow/efficientnet/b3/classification/1",
|
90 |
+
"efficientnet_b4": "https://tfhub.dev/tensorflow/efficientnet/b4/classification/1",
|
91 |
+
"efficientnet_b5": "https://tfhub.dev/tensorflow/efficientnet/b5/classification/1",
|
92 |
+
"efficientnet_b6": "https://tfhub.dev/tensorflow/efficientnet/b6/classification/1",
|
93 |
+
"efficientnet_b7": "https://tfhub.dev/tensorflow/efficientnet/b7/classification/1",
|
94 |
+
"bit_s-r50x1": "https://tfhub.dev/google/bit/s-r50x1/ilsvrc2012_classification/1",
|
95 |
+
"inception_v3": "https://tfhub.dev/google/imagenet/inception_v3/classification/4",
|
96 |
+
"inception_resnet_v2": "https://tfhub.dev/google/imagenet/inception_resnet_v2/classification/4",
|
97 |
+
"resnet_v1_50": "https://tfhub.dev/google/imagenet/resnet_v1_50/classification/4",
|
98 |
+
"resnet_v1_101": "https://tfhub.dev/google/imagenet/resnet_v1_101/classification/4",
|
99 |
+
"resnet_v1_152": "https://tfhub.dev/google/imagenet/resnet_v1_152/classification/4",
|
100 |
+
"resnet_v2_50": "https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4",
|
101 |
+
"resnet_v2_101": "https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4",
|
102 |
+
"resnet_v2_152": "https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4",
|
103 |
+
"nasnet_large": "https://tfhub.dev/google/imagenet/nasnet_large/classification/4",
|
104 |
+
"nasnet_mobile": "https://tfhub.dev/google/imagenet/nasnet_mobile/classification/4",
|
105 |
+
"pnasnet_large": "https://tfhub.dev/google/imagenet/pnasnet_large/classification/4",
|
106 |
+
"mobilenet_v2_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4",
|
107 |
+
"mobilenet_v2_130_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/classification/4",
|
108 |
+
"mobilenet_v2_140_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/4",
|
109 |
+
"mobilenet_v3_small_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/classification/5",
|
110 |
+
"mobilenet_v3_small_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/classification/5",
|
111 |
+
"mobilenet_v3_large_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5",
|
112 |
+
"mobilenet_v3_large_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/classification/5",
|
113 |
+
}
|
114 |
+
|
115 |
+
model_image_size_map = {
|
116 |
+
"efficientnetv2-s": 384,
|
117 |
+
"efficientnetv2-m": 480,
|
118 |
+
"efficientnetv2-l": 480,
|
119 |
+
"efficientnetv2-b0": 224,
|
120 |
+
"efficientnetv2-b1": 240,
|
121 |
+
"efficientnetv2-b2": 260,
|
122 |
+
"efficientnetv2-b3": 300,
|
123 |
+
"efficientnetv2-s-21k": 384,
|
124 |
+
"efficientnetv2-m-21k": 480,
|
125 |
+
"efficientnetv2-l-21k": 480,
|
126 |
+
"efficientnetv2-xl-21k": 512,
|
127 |
+
"efficientnetv2-b0-21k": 224,
|
128 |
+
"efficientnetv2-b1-21k": 240,
|
129 |
+
"efficientnetv2-b2-21k": 260,
|
130 |
+
"efficientnetv2-b3-21k": 300,
|
131 |
+
"efficientnetv2-s-21k-ft1k": 384,
|
132 |
+
"efficientnetv2-m-21k-ft1k": 480,
|
133 |
+
"efficientnetv2-l-21k-ft1k": 480,
|
134 |
+
"efficientnetv2-xl-21k-ft1k": 512,
|
135 |
+
"efficientnetv2-b0-21k-ft1k": 224,
|
136 |
+
"efficientnetv2-b1-21k-ft1k": 240,
|
137 |
+
"efficientnetv2-b2-21k-ft1k": 260,
|
138 |
+
"efficientnetv2-b3-21k-ft1k": 300,
|
139 |
+
"efficientnet_b0": 224,
|
140 |
+
"efficientnet_b1": 240,
|
141 |
+
"efficientnet_b2": 260,
|
142 |
+
"efficientnet_b3": 300,
|
143 |
+
"efficientnet_b4": 380,
|
144 |
+
"efficientnet_b5": 456,
|
145 |
+
"efficientnet_b6": 528,
|
146 |
+
"efficientnet_b7": 600,
|
147 |
+
"inception_v3": 299,
|
148 |
+
"inception_resnet_v2": 299,
|
149 |
+
"mobilenet_v2_100_224": 224,
|
150 |
+
"mobilenet_v2_130_224": 224,
|
151 |
+
"mobilenet_v2_140_224": 224,
|
152 |
+
"nasnet_large": 331,
|
153 |
+
"nasnet_mobile": 224,
|
154 |
+
"pnasnet_large": 331,
|
155 |
+
"resnet_v1_50": 224,
|
156 |
+
"resnet_v1_101": 224,
|
157 |
+
"resnet_v1_152": 224,
|
158 |
+
"resnet_v2_50": 224,
|
159 |
+
"resnet_v2_101": 224,
|
160 |
+
"resnet_v2_152": 224,
|
161 |
+
"mobilenet_v3_small_100_224": 224,
|
162 |
+
"mobilenet_v3_small_075_224": 224,
|
163 |
+
"mobilenet_v3_large_100_224": 224,
|
164 |
+
"mobilenet_v3_large_075_224": 224,
|
165 |
+
}
|
166 |
+
|
167 |
+
model_handle = model_handle_map[model_name]
|
168 |
+
|
169 |
+
|
170 |
+
max_dynamic_size = 512
|
171 |
+
if model_name in model_image_size_map:
|
172 |
+
image_size = model_image_size_map[model_name]
|
173 |
+
dynamic_size = False
|
174 |
+
print(f"Images will be converted to {image_size}x{image_size}")
|
175 |
+
else:
|
176 |
+
dynamic_size = True
|
177 |
+
print(f"Images will be capped to a max size of {max_dynamic_size}x{max_dynamic_size}")
|
178 |
+
|
179 |
+
labels_file = "https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt"
|
180 |
+
|
181 |
+
#download labels and creates a maps
|
182 |
+
downloaded_file = tf.keras.utils.get_file("labels.txt", origin=labels_file)
|
183 |
+
|
184 |
+
classes = []
|
185 |
+
|
186 |
+
with open(downloaded_file) as f:
|
187 |
+
labels = f.readlines()
|
188 |
+
classes = [l.strip() for l in labels]
|
189 |
+
|
190 |
+
|
191 |
+
classifier = hub.load(model_handle)
|
192 |
+
|
193 |
+
|
194 |
+
def inference(img):
|
195 |
+
image, original_image = load_image(img, image_size, dynamic_size, max_dynamic_size)
|
196 |
+
|
197 |
+
|
198 |
+
input_shape = image.shape
|
199 |
+
warmup_input = tf.random.uniform(input_shape, 0, 1.0)
|
200 |
+
warmup_logits = classifier(warmup_input).numpy()
|
201 |
+
|
202 |
+
# Run model on image
|
203 |
+
probabilities = tf.nn.softmax(classifier(image)).numpy()
|
204 |
+
|
205 |
+
top_5 = tf.argsort(probabilities, axis=-1, direction="DESCENDING")[0][:5].numpy()
|
206 |
+
np_classes = np.array(classes)
|
207 |
+
|
208 |
+
# Some models include an additional 'background' class in the predictions, so
|
209 |
+
# we must account for this when reading the class labels.
|
210 |
+
includes_background_class = probabilities.shape[1] == 1001
|
211 |
+
result = {}
|
212 |
+
for i, item in enumerate(top_5):
|
213 |
+
class_index = item if includes_background_class else item + 1
|
214 |
+
line = f'({i+1}) {class_index:4} - {classes[class_index]}: {probabilities[0][top_5][i]}'
|
215 |
+
result[classes[class_index]] = probabilities[0][top_5][i].item()
|
216 |
+
return result
|
217 |
+
|
218 |
+
title="efficientnet_b1"
|
219 |
+
description="Gradio Demo for efficientnet_b1: Imagenet (ILSVRC-2012-CLS) classification with EfficientNet-B1. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
|
220 |
+
|
221 |
+
article = "<p style='text-align: center'><a href='https://tfhub.dev/google/efficientnet/b1/classification/1' target='_blank'>Tensorflow Hub</a></p>"
|
222 |
+
examples=[['apple1.jpg']]
|
223 |
+
|
224 |
+
gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)
|