tensorkelechi commited on
Commit
44883c6
·
verified ·
1 Parent(s): bb57dce

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ripple
2
+ import streamlit as stl
3
+ from tqdm.auto import tqdm
4
+
5
+ # streamlit app
6
+ stl.set_page_config(
7
+ page_title="Ripple",
8
+ )
9
+
10
+ stl.title("ripple search")
11
+ stl.write(
12
+ "An app that uses text input to search for described images, using embeddings of selected image datasets. Uses contrastive learning models(CLIP) and the sentence transformers library"
13
+ )
14
+ stl.link_button(
15
+ label="link to github and full library code",
16
+ url="https://github.com/kelechi-c/ripple_net",
17
+ )
18
+
19
+ dataset = stl.selectbox(
20
+ "choose huggingface dataset(bgger datasets take more time to embed..)",
21
+ options=[
22
+ "huggan/wikiart(1k)",
23
+ "huggan/wikiart(11k)",
24
+ "zh-plus/tiny-imagenet(110k)",
25
+ "lambdalabs/naruto-blip-captions(1k)",
26
+ "detection-datasets/fashionpedia(45k)",
27
+ ],
28
+ )
29
+ # initalized global variables
30
+
31
+ embedded_data = None
32
+ embedder = None
33
+ text_search = None
34
+
35
+ ret_images = []
36
+ scores = []
37
+
38
+
39
+ if dataset and stl.button("embed image dataset"):
40
+ with stl.spinner("Initializing and creating image embeddings from dataset"):
41
+ embedder = ripple.ImageEmbedder(
42
+ dataset, retrieval_type="text-image", dataset_type="huggingface"
43
+ )
44
+
45
+ embedded_data = embedder.create_embeddings(device="cpu")
46
+ stl.success("Sucessfully embedded and dcreated image index")
47
+
48
+ if embedded_data is not None:
49
+ text_search = ripple.TextSearch(embedded_data, embedder.embed_model)
50
+ stl.success("Initialized text search class")
51
+
52
+ search_term = stl.text_input("Text description/search for image")
53
+
54
+ if search_term:
55
+ with stl.spinner("retrieving images with description.."):
56
+ scores, ret_images = text_search.get_similar_images(
57
+ search_term, k_images=4)
58
+ stl.success(f"sucessfully retrieved {len(ret_images)}")
59
+
60
+ for count, score, image in tqdm(zip(range(len(ret_images)), scores, ret_images)):
61
+ stl.image(image["image"][count])
62
+ stl.write(score)