Spaces:
Running
Running
modify getting AI model for cache
Browse files- src/embedding.py +7 -1
src/embedding.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
|
@@ -5,7 +6,11 @@ MODEL_NAME = "cl-nagoya/ruri-large"
|
|
5 |
PREFIX_QUERY = "クエリ: " # "query: "
|
6 |
PASSAGE_QUERY = "文章: " # "passage: "
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
def get_embeddings(texts: list[str], query=False, passage=False) -> np.ndarray:
|
@@ -14,6 +19,7 @@ def get_embeddings(texts: list[str], query=False, passage=False) -> np.ndarray:
|
|
14 |
if passage:
|
15 |
texts = [PASSAGE_QUERY + text for text in texts]
|
16 |
# texts = [text[i : i + CHUNK_SIZE] for i in range(0, len(text), CHUNK_SIZE)]
|
|
|
17 |
embeddings = model.encode(texts)
|
18 |
# print(embeddings.shape)
|
19 |
# print(type(embeddings))
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
|
|
|
6 |
PREFIX_QUERY = "クエリ: " # "query: "
|
7 |
PASSAGE_QUERY = "文章: " # "passage: "
|
8 |
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def get_sentence_model():
|
12 |
+
model = SentenceTransformer(MODEL_NAME)
|
13 |
+
return model
|
14 |
|
15 |
|
16 |
def get_embeddings(texts: list[str], query=False, passage=False) -> np.ndarray:
|
|
|
19 |
if passage:
|
20 |
texts = [PASSAGE_QUERY + text for text in texts]
|
21 |
# texts = [text[i : i + CHUNK_SIZE] for i in range(0, len(text), CHUNK_SIZE)]
|
22 |
+
model = get_sentence_model()
|
23 |
embeddings = model.encode(texts)
|
24 |
# print(embeddings.shape)
|
25 |
# print(type(embeddings))
|