Spaces:
Running
Running
Merge pull request #4 from terapyon/terada/mt-241-streamlit-ui
Browse files- pyproject.toml +1 -0
- requirements.txt +2 -1
- src/app.py +74 -0
- src/embedding.py +7 -1
pyproject.toml
CHANGED
@@ -14,6 +14,7 @@ dependencies = [
|
|
14 |
"pyarrow>=18.1.0",
|
15 |
"sentence-transformers>=3.3.1",
|
16 |
"sentencepiece>=0.2.0",
|
|
|
17 |
"torch>=2.5.1",
|
18 |
"tqdm>=4.67.1",
|
19 |
"unidic-lite>=1.0.8",
|
|
|
14 |
"pyarrow>=18.1.0",
|
15 |
"sentence-transformers>=3.3.1",
|
16 |
"sentencepiece>=0.2.0",
|
17 |
+
"streamlit>=1.41.1",
|
18 |
"torch>=2.5.1",
|
19 |
"tqdm>=4.67.1",
|
20 |
"unidic-lite>=1.0.8",
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ pandas
|
|
9 |
numpy
|
10 |
polars
|
11 |
pyarrow
|
12 |
-
duckdb
|
|
|
|
9 |
numpy
|
10 |
polars
|
11 |
pyarrow
|
12 |
+
duckdb
|
13 |
+
streamlit
|
src/app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import duckdb
|
3 |
+
from embedding import get_embeddings
|
4 |
+
from config import DUCKDB_FILE
|
5 |
+
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def get_conn():
|
9 |
+
return duckdb.connect(DUCKDB_FILE)
|
10 |
+
|
11 |
+
|
12 |
+
title_query = """SELECT id, title FROM podcasts
|
13 |
+
ORDER BY date DESC;
|
14 |
+
"""
|
15 |
+
|
16 |
+
query = """WITH filtered_podcasts AS (
|
17 |
+
SELECT id
|
18 |
+
FROM podcasts
|
19 |
+
WHERE id in ?
|
20 |
+
),
|
21 |
+
ordered_embeddings AS (
|
22 |
+
SELECT embeddings.id, embeddings.part
|
23 |
+
FROM embeddings
|
24 |
+
JOIN filtered_podcasts fp ON embeddings.id = fp.id
|
25 |
+
ORDER BY array_distance(embedding, ?::FLOAT[1024])
|
26 |
+
LIMIT 10
|
27 |
+
)
|
28 |
+
SELECT
|
29 |
+
p.title,
|
30 |
+
p.date,
|
31 |
+
e.start,
|
32 |
+
e.text,
|
33 |
+
e.part,
|
34 |
+
p.audio,
|
35 |
+
FROM
|
36 |
+
ordered_embeddings oe
|
37 |
+
JOIN
|
38 |
+
episodes e
|
39 |
+
ON
|
40 |
+
oe.id = e.id AND oe.part = e.part
|
41 |
+
JOIN
|
42 |
+
podcasts p
|
43 |
+
ON
|
44 |
+
oe.id = p.id;
|
45 |
+
"""
|
46 |
+
|
47 |
+
st.title("terapyon cannel search")
|
48 |
+
|
49 |
+
conn = get_conn()
|
50 |
+
titles = conn.execute(title_query).df()
|
51 |
+
selected_title: list[str] | None = st.multiselect("Select title", titles["title"])
|
52 |
+
if selected_title:
|
53 |
+
selected_ids = titles.loc[titles.loc[:, "title"].isin(selected_title), "id"].tolist()
|
54 |
+
else:
|
55 |
+
st.write("All titles")
|
56 |
+
selected_ids = titles.loc[:, "id"].tolist()
|
57 |
+
|
58 |
+
word = st.text_input("Search word")
|
59 |
+
if word:
|
60 |
+
st.write(f"Search word: {word}")
|
61 |
+
embeddings = get_embeddings([word], query=True)
|
62 |
+
word_embedding = embeddings[0, :]
|
63 |
+
|
64 |
+
result = conn.execute(query,
|
65 |
+
(selected_ids, word_embedding,)).df()
|
66 |
+
selected = st.dataframe(result,
|
67 |
+
column_order=["title", "date", "part", "start", "text", "audio"],
|
68 |
+
on_select="rerun",
|
69 |
+
selection_mode="single-row")
|
70 |
+
if selected:
|
71 |
+
rows = selected["selection"].get("rows")
|
72 |
+
if rows:
|
73 |
+
row = rows[0]
|
74 |
+
st.text(result.iloc[row, 3])
|
src/embedding.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
from sentence_transformers import SentenceTransformer
|
3 |
|
@@ -5,7 +6,11 @@ MODEL_NAME = "cl-nagoya/ruri-large"
|
|
5 |
PREFIX_QUERY = "クエリ: " # "query: "
|
6 |
PASSAGE_QUERY = "文章: " # "passage: "
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
def get_embeddings(texts: list[str], query=False, passage=False) -> np.ndarray:
|
@@ -14,6 +19,7 @@ def get_embeddings(texts: list[str], query=False, passage=False) -> np.ndarray:
|
|
14 |
if passage:
|
15 |
texts = [PASSAGE_QUERY + text for text in texts]
|
16 |
# texts = [text[i : i + CHUNK_SIZE] for i in range(0, len(text), CHUNK_SIZE)]
|
|
|
17 |
embeddings = model.encode(texts)
|
18 |
# print(embeddings.shape)
|
19 |
# print(type(embeddings))
|
|
|
1 |
+
import streamlit as st
|
2 |
import numpy as np
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
|
|
|
6 |
PREFIX_QUERY = "クエリ: " # "query: "
|
7 |
PASSAGE_QUERY = "文章: " # "passage: "
|
8 |
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def get_sentence_model():
|
12 |
+
model = SentenceTransformer(MODEL_NAME)
|
13 |
+
return model
|
14 |
|
15 |
|
16 |
def get_embeddings(texts: list[str], query=False, passage=False) -> np.ndarray:
|
|
|
19 |
if passage:
|
20 |
texts = [PASSAGE_QUERY + text for text in texts]
|
21 |
# texts = [text[i : i + CHUNK_SIZE] for i in range(0, len(text), CHUNK_SIZE)]
|
22 |
+
model = get_sentence_model()
|
23 |
embeddings = model.encode(texts)
|
24 |
# print(embeddings.shape)
|
25 |
# print(type(embeddings))
|