Spaces:
Running
Running
import base64 | |
import re | |
import json | |
import pandas as pd | |
import gradio as gr | |
import pyterrier as pt | |
pt.init() | |
import pyt_splade | |
from pyterrier_gradio import Demo, MarkdownFile, interface, df2code, code2md, EX_Q, EX_D | |
factory_max = pyt_splade.Splade(agg='max') | |
factory_sum = pyt_splade.Splade(agg='sum') | |
COLAB_NAME = 'pyterrier_splade.ipynb' | |
COLAB_INSTALL = ''' | |
!pip install -q git+https://github.com/naver/splade | |
!pip install -q git+https://github.com/cmacdonald/pyt_splade | |
'''.strip() | |
def generate_vis(df, mode='Document'): | |
if len(df) == 0: | |
return '' | |
result = [] | |
if mode == 'Document': | |
max_score = max(max(t.values()) for t in df['toks']) | |
for row in df.itertuples(index=False): | |
if mode == 'Query': | |
tok_scores = row.query_toks | |
orig_tokens = factory_max.tokenizer.tokenize(row.text) | |
max_score = max(tok_scores.values()) | |
id = row.qid | |
else: | |
tok_scores = row.toks | |
orig_tokens = factory_max.tokenizer.tokenize(row.text) | |
id = row.docno | |
def toks2span(toks): | |
return '<kbd> </kbd>'.join(f'<kbd style="background-color: rgba(66, 135, 245, {tok_scores.get(t, 0)/max_score});">{t}</kbd>' for t in toks) | |
orig_tokens_set = set(orig_tokens) | |
exp_tokens = [t for t, v in sorted(tok_scores.items(), key=lambda x: (-x[1], x[0])) if t not in orig_tokens_set] | |
result.append(f''' | |
<div style="font-size: 1.2em;">{mode}: <strong>{id}</strong></div> | |
<div style="margin: 4px 0 16px; padding: 4px; border: 1px solid black;"> | |
<div> | |
{toks2span(orig_tokens)} | |
</div> | |
<div><strong>Expansion Tokens:</strong> {toks2span(exp_tokens)}</div> | |
</div> | |
''') | |
return '\n'.join(result) | |
def predict_query(input, agg): | |
code = f'''import pandas as pd | |
import pyt_splade | |
splade = pyt_splade.Splade(agg={agg!r}) | |
query_pipeline = splade.query_encoder() | |
query_pipeline({df2code(input)}) | |
''' | |
pipeline = { | |
'max': factory_max, | |
'sum': factory_sum | |
}[agg].query_encoder() | |
res = pipeline(input) | |
vis = generate_vis(res, mode='Query') | |
return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis) | |
def predict_doc(input, agg): | |
code = f'''import pandas as pd | |
import pyt_splade | |
splade = pyt_splade.Splade(agg={repr(agg)}) | |
doc_pipeline = splade.doc_encoder() | |
doc_pipeline({df2code(input)}) | |
''' | |
pipeline = { | |
'max': factory_max, | |
'sum': factory_sum | |
}[agg].doc_encoder() | |
res = pipeline(input) | |
vis = generate_vis(res, mode='Document') | |
res['toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['toks']] | |
return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis) | |
interface( | |
MarkdownFile('README.md'), | |
MarkdownFile('query.md'), | |
Demo( | |
predict_query, | |
EX_Q, | |
[ | |
gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'), | |
], | |
scale=2/3 | |
), | |
MarkdownFile('doc.md'), | |
Demo( | |
predict_doc, | |
EX_D, | |
[ | |
gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'), | |
], | |
scale=2/3 | |
), | |
MarkdownFile('wrapup.md'), | |
).launch(share=False) | |