Sean MacAvaney commited on
Commit
924cd68
·
1 Parent(s): 1e7bc58
Files changed (6) hide show
  1. README.md +1 -101
  2. app.py +46 -173
  3. doc.md +10 -0
  4. query.md +11 -0
  5. requirements.txt +1 -0
  6. wrapup.md +47 -0
README.md CHANGED
@@ -9,107 +9,7 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- <style>
13
- .transformer {
14
- display: inline-block;
15
- background: #8facdb;
16
- position: relative;
17
- height: 60px;
18
- line-height: 60px;
19
- padding: 0 24px;
20
- margin: 0 18px;
21
- color: #333;
22
- cursor: help;
23
- }
24
- .transformer::before {
25
- content: "";
26
- position: absolute;
27
- bottom: 0;
28
- top: 0;
29
- left: -15px;
30
- border-top: 30px solid #8facdb;
31
- border-bottom: 30px solid #8facdb;
32
- border-left: 15px solid transparent;
33
- }
34
- .transformer::after {
35
- content: "";
36
- position: absolute;
37
- bottom: 0;
38
- top: 0;
39
- right: -15px;
40
- border-top: 30px solid transparent;
41
- border-bottom: 30px solid transparent;
42
- border-left: 15px solid #8facdb;
43
- }
44
- .transformer.boring {
45
- background: #ddd;
46
- }
47
- .transformer.boring::before {
48
- border-top-color: #ddd;
49
- border-bottom-color: #ddd;
50
- }
51
- .transformer.boring::after {
52
- border-left-color: #ddd;
53
- }
54
- .df {
55
- width: 24px;
56
- line-height: 24px;
57
- text-align: center;
58
- border: 3px double #888;
59
- background-color: #eee;
60
- color: #333;
61
- border-radius: 4px;
62
- display: inline-block;
63
- box-sizing: content-box;
64
- cursor: help;
65
- margin: 0 -25px;
66
- opacity: 0.5;
67
- z-index: 1;
68
- position: relative;
69
- }
70
- .df:hover {
71
- opacity: 1;
72
- }
73
- .pipeline {
74
- text-align: center;
75
- }
76
- .artefact {
77
- width: 32px;
78
- line-height: 32px;
79
- background: #eee;
80
- display: inline-block;
81
- box-sizing: content-box;
82
- cursor: help;
83
- margin: 0 -25px;
84
- z-index: 1;
85
- opacity: 0.5;
86
- position: relative;
87
- color: #333;
88
- text-align: center;
89
- border: 3px double #888;
90
- border-radius: 50%
91
- }
92
- .artefact:hover {
93
- opacity: 1;
94
- }
95
- .transformer .artefact {
96
- bottom: -12px;
97
- left: 50%;
98
- margin-left: -16px;
99
- }
100
- </style>
101
 
102
  This is a demonstration of [PyTerrier's SPLADE package](https://github.com/cmacdonald/pyt_splade). The SPLADE model encodes queries and documents
103
  into sparse representations, which can then be used for indexing and retrieval.
104
-
105
- ### Query Encoding
106
-
107
- Let's start by exploring SPLADE's query encoder. The query encoder is a `Q→Q` (query rewriting, query-to-query) transformer, and can be used in pipelines accordingly.
108
- It maps a query string into [MatchOp](https://terrier-core.readthedocs.io/en/latest/querylanguage.html#matching-op-query-language) query with terms from the
109
- query re-weighted and weighted expansion terms added.
110
-
111
- <div class="pipeline">
112
- <div class="df" title="Query Frame">Q</div>
113
- <div class="transformer" title="SPLADE Query Transformer">SPLADE</div>
114
- <div class="df" title="Query Frame">Q</div>
115
- </div>
 
9
  pinned: false
10
  ---
11
 
12
+ # 🐕 PyTerrier: SPLADE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  This is a demonstration of [PyTerrier's SPLADE package](https://github.com/cmacdonald/pyt_splade). The SPLADE model encodes queries and documents
15
  into sparse representations, which can then be used for indexing and retrieval.
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,14 +1,13 @@
1
  import re
2
  import json
3
- import base64
4
  import pandas as pd
5
  import gradio as gr
6
  import pyterrier as pt
7
  pt.init()
8
  import pyt_splade
9
- factory = pyt_splade.SpladeFactory()
10
- pipe_queries = factory.query()
11
- pipe_docs = factory.indexing()
12
 
13
  COLAB_NAME = 'pyterrier_splade.ipynb'
14
  COLAB_INSTALL = '''
@@ -16,30 +15,6 @@ COLAB_INSTALL = '''
16
  !pip install -q git+https://github.com/seanmacavaney/pyt_splade@misc
17
  '''.strip()
18
 
19
- def df2code(df):
20
- rows = []
21
- for row in df.itertuples(index=False):
22
- rows.append(f' {dict(row._asdict())},')
23
- rows = '\n'.join(rows)
24
- return f'''pd.DataFrame([
25
- {rows}
26
- ])'''
27
-
28
- def code2colab(code):
29
- enc_code = base64.b64encode((COLAB_INSTALL + '\n\n' + code.strip()).encode()).decode()
30
- dec = base64.b64decode(enc_code)
31
- url = f'https://colaburl.macavaney.us/?py64={enc_code}&name={COLAB_NAME}'
32
- return f'<div style="text-align: center; margin-bottom: -16px;"><a href="{url}" rel="nofollow" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" style="margin: 0; display: inline-block;" /></a></div>'
33
-
34
- def code2md(code):
35
- return f'''
36
- {code2colab(code)}
37
-
38
- ```python
39
- {code.strip()}
40
- ```
41
- '''
42
-
43
  def generate_vis(df, mode='Document'):
44
  if len(df) == 0:
45
  return ''
@@ -50,11 +25,11 @@ def generate_vis(df, mode='Document'):
50
  if mode == 'Query':
51
  tok_scores = {m.group(2): float(m.group(1)) for m in re.finditer(r'combine:0=([0-9.]+)\(([^)]+)\)', row.query)}
52
  max_score = max(tok_scores.values())
53
- orig_tokens = factory.tokenizer.tokenize(row.query_0)
54
  id = row.qid
55
  else:
56
  tok_scores = row.toks
57
- orig_tokens = factory.tokenizer.tokenize(row.text)
58
  id = row.docno
59
  def toks2span(toks):
60
  return '<kbd> </kbd>'.join(f'<kbd style="background-color: rgba(66, 135, 245, {tok_scores.get(t, 0)/max_score});">{t}</kbd>' for t in toks)
@@ -71,170 +46,68 @@ def generate_vis(df, mode='Document'):
71
  ''')
72
  return '\n'.join(result)
73
 
74
- def predict_query(input):
75
  code = f'''import pandas as pd
76
  import pyterrier as pt ; pt.init()
77
  import pyt_splade
78
 
79
- factory = pyt_splade.SpladeFactory()
80
 
81
  query_pipeline = factory.query()
82
 
83
  query_pipeline({df2code(input)})
84
  '''
85
- res = pipe_queries(input)
 
 
 
 
86
  vis = generate_vis(res, mode='Query')
87
- return (res, code2md(code), vis)
88
 
89
- def predict_doc(input):
90
  code = f'''import pandas as pd
91
  import pyterrier as pt ; pt.init()
92
  import pyt_splade
93
 
94
- factory = pyt_splade.SpladeFactory()
95
 
96
  doc_pipeline = factory.indexing()
97
 
98
  doc_pipeline({df2code(input)})
99
  '''
100
- res = pipe_docs(input)
 
 
 
 
101
  vis = generate_vis(res, mode='Document')
102
  res['toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['toks']]
103
- return (res, code2md(code), vis)
104
-
105
- with gr.Blocks(css="table.font-mono td, table.font-mono th { white-space: pre-line; font-size: 11px; line-height: 16px; } table.font-mono td input { width: 95%; } th .cursor-pointer {display: none;} th .min-h-\[2\.3rem\] {min-height: inherit;}") as demo:
106
- gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>🐕 PyTerrier: SPLADE</h1>")
107
- gr.Markdown(open('README.md', 'rt').read().split('\n---\n')[-1])
108
-
109
- example_inp = pd.DataFrame([
 
110
  {'qid': '1112389', 'query': 'what is the county for grand rapids, mn'},
111
- ])
112
- example_out = predict_query(example_inp)
113
- inputs, outputs = [], []
114
- with gr.Row().style(equal_height=False):
115
- with gr.Column(scale=1):
116
- with gr.Tab('Pipeline Input'):
117
- inputs.append(gr.Dataframe(
118
- headers=["qid", "query"],
119
- datatype=["str", "str"],
120
- col_count=(2, "fixed"),
121
- row_count=1,
122
- wrap=True,
123
- value=example_inp,
124
- ))
125
- submit_btn = gr.Button("Submit", variant="primary")
126
- with gr.Column(scale=2):
127
- with gr.Tab('Pipeline Output'):
128
- outputs.append(gr.Dataframe(
129
- headers=["qid", "query", "docno", "score", "rank", "text"],
130
- datatype=["str", "str", "str", "number", "number", "str"],
131
- col_count=6,
132
- row_count=1,
133
- wrap=True,
134
- value=example_out[0],
135
- ))
136
- with gr.Tab('Code'):
137
- outputs.append(gr.Markdown(value=example_out[1]))
138
- with gr.Tab('Visualisation'):
139
- outputs.append(gr.HTML(value=example_out[2]))
140
- submit_btn.click(predict_query, inputs, outputs, api_name="predict_query", scroll_to_output=True)
141
-
142
- gr.Markdown('''
143
- ### Document Encoding
144
-
145
- The document encoder works similarly to the query encoder: it is a `D→D` (document rewriting, doc-to-doc) transformer, and can be used in pipelines accordingly.
146
- It maps a document's text into a dictionary with terms from the document re-weighted and weighted expansion terms added.
147
-
148
- <div class="pipeline">
149
- <div class="df" title="Document Frame">D</div>
150
- <div class="transformer" title="SPLADE Indexing Transformer">SPLADE</div>
151
- <div class="df" title="Document Frame">D</div>
152
- </div>
153
-
154
- ''')
155
-
156
- example_inp = pd.DataFrame([
157
  {'docno': '0', 'text': 'The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.'},
158
- ])
159
- example_out = predict_doc(example_inp)
160
- inputs, outputs = [], []
161
- with gr.Row().style(equal_height=False):
162
- with gr.Column(scale=1):
163
- with gr.Tab("Pipeline Input"):
164
- inputs.append(gr.Dataframe(
165
- headers=["docno", "text"],
166
- datatype=["str", "str"],
167
- col_count=(2, "fixed"),
168
- row_count=1,
169
- wrap=True,
170
- value=example_inp,
171
- ))
172
- submit_btn = gr.Button("Submit", variant="primary")
173
- with gr.Column(scale=2):
174
- with gr.Tab("Pipeline Output"):
175
- outputs.append(gr.Dataframe(
176
- headers=["qid", "query", "docno", "score", "rank", "text"],
177
- datatype=["str", "str", "str", "number", "number", "str"],
178
- col_count=6,
179
- row_count=1,
180
- wrap=True,
181
- value=example_out[0],
182
- ))
183
- with gr.Tab('Code'):
184
- outputs.append(gr.Markdown(value=example_out[1]))
185
- with gr.Tab('Visualisation'):
186
- outputs.append(gr.HTML(value=example_out[2]))
187
- submit_btn.click(predict_doc, inputs, outputs, api_name="predict_doc", scroll_to_output=True)
188
-
189
- gr.Markdown('''
190
- ### Putting it all together
191
-
192
- When you use the document encoder in an indexing pipeline, the rewritting document contents are indexed:
193
-
194
- <div class="pipeline">
195
- <div class="df" title="Document Frame">D</div>
196
- <div class="transformer" title="SPLADE Indexing Transformer">SPLADE</div>
197
- <div class="df" title="Document Frame">D</div>
198
- <div class="transformer boring" title="Indexer">Indexer</div>
199
- <div class="artefact" title="SPLADE Index">IDX</div>
200
- </div>
201
-
202
- ```python
203
- import pyterrer as pt
204
- pt.init(version='snapshot')
205
- import pyt_splade
206
-
207
- dataset = pt.get_dataset('irds:msmarco-passage')
208
- factory = pyt_splade.SpladeFactory()
209
-
210
- indexer = pt.IterDictIndexer('./msmarco_psg', pretokenized=True)
211
-
212
- indxer_pipe = factory.indexing() >> indexer
213
- indxer_pipe.index(dataset.get_corpus_iter())
214
- ```
215
-
216
- Once you built an index, you can build a retrieval pipeline that first encodes the query,
217
- and then performs retrieval:
218
-
219
- <div class="pipeline">
220
- <div class="df" title="Query Frame">Q</div>
221
- <div class="transformer" title="SPLADE Query Transformer">SPLADE</div>
222
- <div class="df" title="Query Frame">Q</div>
223
- <div class="transformer boring" title="Term Frequency Transformer">TF Retriever <div class="artefact" title="SPLADE Index">IDX</div></div>
224
- <div class="df" title="Result Frame">R</div>
225
- </div>
226
-
227
- ```python
228
- splade_retr = factory.query() >> pt.BatchRetrieve('./msmarco_psg', wmodel='Tf')
229
- ```
230
-
231
- ### References & Credits
232
-
233
- This package uses [Naver's SPLADE repository](https://github.com/naver/splade).
234
-
235
- - Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant. [SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720). SIGIR 2021.
236
- - Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. [PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval](https://dl.acm.org/doi/abs/10.1145/3459637.3482013). CIKM 2021.
237
- ''')
238
-
239
-
240
- demo.launch(share=False)
 
1
  import re
2
  import json
 
3
  import pandas as pd
4
  import gradio as gr
5
  import pyterrier as pt
6
  pt.init()
7
  import pyt_splade
8
+ from pyterrier_gradio import Demo, MarkdownFile, interface, df2code, code2md
9
+ factory_max = pyt_splade.SpladeFactory(agg='max')
10
+ factory_sum = pyt_splade.SpladeFactory(agg='sum')
11
 
12
  COLAB_NAME = 'pyterrier_splade.ipynb'
13
  COLAB_INSTALL = '''
 
15
  !pip install -q git+https://github.com/seanmacavaney/pyt_splade@misc
16
  '''.strip()
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  def generate_vis(df, mode='Document'):
19
  if len(df) == 0:
20
  return ''
 
25
  if mode == 'Query':
26
  tok_scores = {m.group(2): float(m.group(1)) for m in re.finditer(r'combine:0=([0-9.]+)\(([^)]+)\)', row.query)}
27
  max_score = max(tok_scores.values())
28
+ orig_tokens = factory_max.tokenizer.tokenize(row.query_0)
29
  id = row.qid
30
  else:
31
  tok_scores = row.toks
32
+ orig_tokens = factory_max.tokenizer.tokenize(row.text)
33
  id = row.docno
34
  def toks2span(toks):
35
  return '<kbd> </kbd>'.join(f'<kbd style="background-color: rgba(66, 135, 245, {tok_scores.get(t, 0)/max_score});">{t}</kbd>' for t in toks)
 
46
  ''')
47
  return '\n'.join(result)
48
 
49
+ def predict_query(input, agg):
50
  code = f'''import pandas as pd
51
  import pyterrier as pt ; pt.init()
52
  import pyt_splade
53
 
54
+ factory = pyt_splade.SpladeFactory(agg={agg})
55
 
56
  query_pipeline = factory.query()
57
 
58
  query_pipeline({df2code(input)})
59
  '''
60
+ pipeline = {
61
+ 'max': factory_max,
62
+ 'sum': factory_sum
63
+ }[agg].query()
64
+ res = pipeline(input)
65
  vis = generate_vis(res, mode='Query')
66
+ return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis)
67
 
68
+ def predict_doc(input, agg):
69
  code = f'''import pandas as pd
70
  import pyterrier as pt ; pt.init()
71
  import pyt_splade
72
 
73
+ factory = pyt_splade.SpladeFactory(agg={agg})
74
 
75
  doc_pipeline = factory.indexing()
76
 
77
  doc_pipeline({df2code(input)})
78
  '''
79
+ pipeline = {
80
+ 'max': factory_max,
81
+ 'sum': factory_sum
82
+ }[agg].indexing()
83
+ res = pipeline(input)
84
  vis = generate_vis(res, mode='Document')
85
  res['toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['toks']]
86
+ return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis)
87
+
88
+ interface(
89
+ MarkdownFile('README.md'),
90
+ MarkdownFile('query.md'),
91
+ Demo(
92
+ predict_query,
93
+ pd.DataFrame([
94
  {'qid': '1112389', 'query': 'what is the county for grand rapids, mn'},
95
+ ]),
96
+ [
97
+ gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'),
98
+ ],
99
+ scale=2/3
100
+ ),
101
+ MarkdownFile('doc.md'),
102
+ Demo(
103
+ predict_doc,
104
+ pd.DataFrame([
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  {'docno': '0', 'text': 'The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.'},
106
+ ]),
107
+ [
108
+ gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'),
109
+ ],
110
+ scale=2/3
111
+ ),
112
+ MarkdownFile('wrapup.md'),
113
+ ).launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
doc.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Document Encoding
2
+
3
+ The document encoder works similarly to the query encoder: it is a `D→D` (document rewriting, doc-to-doc) transformer, and can be used in pipelines accordingly.
4
+ It maps a document's text into a dictionary with terms from the document re-weighted and weighted expansion terms added.
5
+
6
+ <div class="pipeline">
7
+ <div class="df" title="Document Frame">D</div>
8
+ <div class="transformer" title="SPLADE Indexing Transformer">SPLADE</div>
9
+ <div class="df" title="Document Frame">D</div>
10
+ </div>
query.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Query Encoding
2
+
3
+ Let's start by exploring SPLADE's query encoder. The query encoder is a `Q→Q` (query rewriting, query-to-query) transformer, and can be used in pipelines accordingly.
4
+ It maps a query string into [MatchOp](https://terrier-core.readthedocs.io/en/latest/querylanguage.html#matching-op-query-language) query with terms from the
5
+ query re-weighted and weighted expansion terms added.
6
+
7
+ <div class="pipeline">
8
+ <div class="df" title="Query Frame">Q</div>
9
+ <div class="transformer" title="SPLADE Query Transformer">SPLADE</div>
10
+ <div class="df" title="Query Frame">Q</div>
11
+ </div>
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
  torch
2
  python-terrier
 
3
  git+https://github.com/naver/splade
4
  git+https://github.com/seanmacavaney/pyt_splade@misc
 
1
  torch
2
  python-terrier
3
+ git+https://github.com/seanmacavaney/pyterrier_gradio
4
  git+https://github.com/naver/splade
5
  git+https://github.com/seanmacavaney/pyt_splade@misc
wrapup.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Putting it all together
2
+
3
+ When you use the document encoder in an indexing pipeline, the rewritting document contents are indexed:
4
+
5
+ <div class="pipeline">
6
+ <div class="df" title="Document Frame">D</div>
7
+ <div class="transformer" title="SPLADE Indexing Transformer">SPLADE</div>
8
+ <div class="df" title="Document Frame">D</div>
9
+ <div class="transformer boring" title="Indexer">Indexer</div>
10
+ <div class="artefact" title="SPLADE Index">IDX</div>
11
+ </div>
12
+
13
+ ```python
14
+ import pyterrer as pt
15
+ pt.init(version='snapshot')
16
+ import pyt_splade
17
+
18
+ dataset = pt.get_dataset('irds:msmarco-passage')
19
+ factory = pyt_splade.SpladeFactory()
20
+
21
+ indexer = pt.IterDictIndexer('./msmarco_psg', pretokenized=True)
22
+
23
+ indxer_pipe = factory.indexing() >> indexer
24
+ indxer_pipe.index(dataset.get_corpus_iter())
25
+ ```
26
+
27
+ Once you built an index, you can build a retrieval pipeline that first encodes the query,
28
+ and then performs retrieval:
29
+
30
+ <div class="pipeline">
31
+ <div class="df" title="Query Frame">Q</div>
32
+ <div class="transformer" title="SPLADE Query Transformer">SPLADE</div>
33
+ <div class="df" title="Query Frame">Q</div>
34
+ <div class="transformer boring" title="Term Frequency Transformer">TF Retriever <div class="artefact" title="SPLADE Index">IDX</div></div>
35
+ <div class="df" title="Result Frame">R</div>
36
+ </div>
37
+
38
+ ```python
39
+ splade_retr = factory.query() >> pt.BatchRetrieve('./msmarco_psg', wmodel='Tf')
40
+ ```
41
+
42
+ ### References & Credits
43
+
44
+ This package uses [Naver's SPLADE repository](https://github.com/naver/splade).
45
+
46
+ - Thibault Formal, Benjamin Piwowarski, Stéphane Clinchant. [SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking](https://arxiv.org/abs/2107.05720). SIGIR 2021.
47
+ - Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, Iadh Ounis. [PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval](https://dl.acm.org/doi/abs/10.1145/3459637.3482013). CIKM 2021.