Spaces:
Sleeping
Sleeping
from .logging_setup import logger | |
from whisperx.utils import get_writer | |
from .utils import remove_files, run_command, remove_directory_contents | |
from typing import List | |
import srt | |
import re | |
import os | |
import copy | |
import string | |
import soundfile as sf | |
from PIL import Image, ImageOps, ImageDraw, ImageFont | |
punctuation_list = list( | |
string.punctuation + "¡¿«»„”“”‚‘’「」『』《》()【】〈〉〔〕〖〗〘〙〚〛⸤⸥⸨⸩" | |
) | |
symbol_list = punctuation_list + ["", "..", "..."] | |
def extract_from_srt(file_path): | |
with open(file_path, "r", encoding="utf-8") as file: | |
srt_content = file.read() | |
subtitle_generator = srt.parse(srt_content) | |
srt_content_list = list(subtitle_generator) | |
return srt_content_list | |
def clean_text(text): | |
# Remove content within square brackets | |
text = re.sub(r'\[.*?\]', '', text) | |
# Add pattern to remove content within <comment> tags | |
text = re.sub(r'<comment>.*?</comment>', '', text) | |
# Remove HTML tags | |
text = re.sub(r'<.*?>', '', text) | |
# Remove "♫" and "♪" content | |
text = re.sub(r'♫.*?♫', '', text) | |
text = re.sub(r'♪.*?♪', '', text) | |
# Replace newline characters with an empty string | |
text = text.replace("\n", ". ") | |
# Remove double quotation marks | |
text = text.replace('"', '') | |
# Collapse multiple spaces and replace with a single space | |
text = re.sub(r"\s+", " ", text) | |
# Normalize spaces around periods | |
text = re.sub(r"[\s\.]+(?=\s)", ". ", text) | |
# Check if there are ♫ or ♪ symbols present | |
if '♫' in text or '♪' in text: | |
return "" | |
text = text.strip() | |
# Valid text | |
return text if text not in symbol_list else "" | |
def srt_file_to_segments(file_path, speaker=False): | |
try: | |
srt_content_list = extract_from_srt(file_path) | |
except Exception as error: | |
logger.error(str(error)) | |
fixed_file = "fixed_sub.srt" | |
remove_files(fixed_file) | |
fix_sub = f'ffmpeg -i "{file_path}" "{fixed_file}" -y' | |
run_command(fix_sub) | |
srt_content_list = extract_from_srt(fixed_file) | |
segments = [] | |
for segment in srt_content_list: | |
text = clean_text(str(segment.content)) | |
if text: | |
segments.append( | |
{ | |
"text": text, | |
"start": float(segment.start.total_seconds()), | |
"end": float(segment.end.total_seconds()), | |
} | |
) | |
if not segments: | |
raise Exception("No data found in srt subtitle file") | |
if speaker: | |
segments = [{**seg, "speaker": "SPEAKER_00"} for seg in segments] | |
return {"segments": segments} | |
# documents | |
def dehyphenate(lines: List[str], line_no: int) -> List[str]: | |
next_line = lines[line_no + 1] | |
word_suffix = next_line.split(" ")[0] | |
lines[line_no] = lines[line_no][:-1] + word_suffix | |
lines[line_no + 1] = lines[line_no + 1][len(word_suffix):] | |
return lines | |
def remove_hyphens(text: str) -> str: | |
""" | |
This fails for: | |
* Natural dashes: well-known, self-replication, use-cases, non-semantic, | |
Post-processing, Window-wise, viewpoint-dependent | |
* Trailing math operands: 2 - 4 | |
* Names: Lopez-Ferreras, VGG-19, CIFAR-100 | |
""" | |
lines = [line.rstrip() for line in text.split("\n")] | |
# Find dashes | |
line_numbers = [] | |
for line_no, line in enumerate(lines[:-1]): | |
if line.endswith("-"): | |
line_numbers.append(line_no) | |
# Replace | |
for line_no in line_numbers: | |
lines = dehyphenate(lines, line_no) | |
return "\n".join(lines) | |
def pdf_to_txt(pdf_file, start_page, end_page): | |
from pypdf import PdfReader | |
with open(pdf_file, "rb") as file: | |
reader = PdfReader(file) | |
logger.debug(f"Total pages: {reader.get_num_pages()}") | |
text = "" | |
start_page_idx = max((start_page-1), 0) | |
end_page_inx = min((end_page), (reader.get_num_pages())) | |
document_pages = reader.pages[start_page_idx:end_page_inx] | |
logger.info( | |
f"Selected pages from {start_page_idx} to {end_page_inx}: " | |
f"{len(document_pages)}" | |
) | |
for page in document_pages: | |
text += remove_hyphens(page.extract_text()) | |
return text | |
def docx_to_txt(docx_file): | |
# https://github.com/AlJohri/docx2pdf update | |
from docx import Document | |
doc = Document(docx_file) | |
text = "" | |
for paragraph in doc.paragraphs: | |
text += paragraph.text + "\n" | |
return text | |
def replace_multiple_elements(text, replacements): | |
pattern = re.compile("|".join(map(re.escape, replacements.keys()))) | |
replaced_text = pattern.sub( | |
lambda match: replacements[match.group(0)], text | |
) | |
# Remove multiple spaces | |
replaced_text = re.sub(r"\s+", " ", replaced_text) | |
return replaced_text | |
def document_preprocessor(file_path, is_string, start_page, end_page): | |
if not is_string: | |
file_ext = os.path.splitext(file_path)[1].lower() | |
if is_string: | |
text = file_path | |
elif file_ext == ".pdf": | |
text = pdf_to_txt(file_path, start_page, end_page) | |
elif file_ext == ".docx": | |
text = docx_to_txt(file_path) | |
elif file_ext == ".txt": | |
with open( | |
file_path, "r", encoding='utf-8', errors='replace' | |
) as file: | |
text = file.read() | |
else: | |
raise Exception("Unsupported file format") | |
# Add space to break segments more easily later | |
replacements = { | |
"、": "、 ", | |
"。": "。 ", | |
# "\n": " ", | |
} | |
text = replace_multiple_elements(text, replacements) | |
# Save text to a .txt file | |
# file_name = os.path.splitext(os.path.basename(file_path))[0] | |
txt_file_path = "./text_preprocessor.txt" | |
with open( | |
txt_file_path, "w", encoding='utf-8', errors='replace' | |
) as txt_file: | |
txt_file.write(text) | |
return txt_file_path, text | |
def split_text_into_chunks(text, chunk_size): | |
words = re.findall(r"\b\w+\b", text) | |
chunks = [] | |
current_chunk = "" | |
for word in words: | |
if ( | |
len(current_chunk) + len(word) + 1 <= chunk_size | |
): # Adding 1 for the space between words | |
if current_chunk: | |
current_chunk += " " | |
current_chunk += word | |
else: | |
chunks.append(current_chunk) | |
current_chunk = word | |
if current_chunk: | |
chunks.append(current_chunk) | |
return chunks | |
def determine_chunk_size(file_name): | |
patterns = { | |
re.compile(r".*-(Male|Female)$"): 1024, # by character | |
re.compile(r".* BARK$"): 100, # t 64 256 | |
re.compile(r".* VITS$"): 500, | |
re.compile( | |
r".+\.(wav|mp3|ogg|m4a)$" | |
): 150, # t 250 400 api automatic split | |
re.compile(r".* VITS-onnx$"): 250, # automatic sentence split | |
re.compile(r".* OpenAI-TTS$"): 1024 # max charaters 4096 | |
} | |
for pattern, chunk_size in patterns.items(): | |
if pattern.match(file_name): | |
return chunk_size | |
# Default chunk size if the file doesn't match any pattern; max 1800 | |
return 100 | |
def plain_text_to_segments(result_text=None, chunk_size=None): | |
if not chunk_size: | |
chunk_size = 100 | |
text_chunks = split_text_into_chunks(result_text, chunk_size) | |
segments_chunks = [] | |
for num, chunk in enumerate(text_chunks): | |
chunk_dict = { | |
"text": chunk, | |
"start": (1.0 + num), | |
"end": (2.0 + num), | |
"speaker": "SPEAKER_00", | |
} | |
segments_chunks.append(chunk_dict) | |
result_diarize = {"segments": segments_chunks} | |
return result_diarize | |
def segments_to_plain_text(result_diarize): | |
complete_text = "" | |
for seg in result_diarize["segments"]: | |
complete_text += seg["text"] + " " # issue | |
# Save text to a .txt file | |
# file_name = os.path.splitext(os.path.basename(file_path))[0] | |
txt_file_path = "./text_translation.txt" | |
with open( | |
txt_file_path, "w", encoding='utf-8', errors='replace' | |
) as txt_file: | |
txt_file.write(complete_text) | |
return txt_file_path, complete_text | |
# doc to video | |
COLORS = { | |
"black": (0, 0, 0), | |
"white": (255, 255, 255), | |
"red": (255, 0, 0), | |
"green": (0, 255, 0), | |
"blue": (0, 0, 255), | |
"yellow": (255, 255, 0), | |
"light_gray": (200, 200, 200), | |
"light_blue": (173, 216, 230), | |
"light_green": (144, 238, 144), | |
"light_yellow": (255, 255, 224), | |
"light_pink": (255, 182, 193), | |
"lavender": (230, 230, 250), | |
"peach": (255, 218, 185), | |
"light_cyan": (224, 255, 255), | |
"light_salmon": (255, 160, 122), | |
"light_green_yellow": (173, 255, 47), | |
} | |
BORDER_COLORS = ["dynamic"] + list(COLORS.keys()) | |
def calculate_average_color(img): | |
# Resize the image to a small size for faster processing | |
img_small = img.resize((50, 50)) | |
# Calculate the average color | |
average_color = img_small.convert("RGB").resize((1, 1)).getpixel((0, 0)) | |
return average_color | |
def add_border_to_image( | |
image_path, | |
target_width, | |
target_height, | |
border_color=None | |
): | |
img = Image.open(image_path) | |
# Calculate the width and height for the new image with borders | |
original_width, original_height = img.size | |
original_aspect_ratio = original_width / original_height | |
target_aspect_ratio = target_width / target_height | |
# Resize the image to fit the target resolution retaining aspect ratio | |
if original_aspect_ratio > target_aspect_ratio: | |
# Image is wider, calculate new height | |
new_height = int(target_width / original_aspect_ratio) | |
resized_img = img.resize((target_width, new_height)) | |
else: | |
# Image is taller, calculate new width | |
new_width = int(target_height * original_aspect_ratio) | |
resized_img = img.resize((new_width, target_height)) | |
# Calculate padding for borders | |
padding = (0, 0, 0, 0) | |
if resized_img.size[0] != target_width or resized_img.size[1] != target_height: | |
if original_aspect_ratio > target_aspect_ratio: | |
# Add borders vertically | |
padding = (0, (target_height - resized_img.size[1]) // 2, 0, (target_height - resized_img.size[1]) // 2) | |
else: | |
# Add borders horizontally | |
padding = ((target_width - resized_img.size[0]) // 2, 0, (target_width - resized_img.size[0]) // 2, 0) | |
# Add borders with specified color | |
if not border_color or border_color == "dynamic": | |
border_color = calculate_average_color(resized_img) | |
else: | |
border_color = COLORS.get(border_color, (0, 0, 0)) | |
bordered_img = ImageOps.expand(resized_img, padding, fill=border_color) | |
bordered_img.save(image_path, format='PNG') | |
return image_path | |
def resize_and_position_subimage( | |
subimage, | |
max_width, | |
max_height, | |
subimage_position, | |
main_width, | |
main_height | |
): | |
subimage_width, subimage_height = subimage.size | |
# Resize subimage if it exceeds maximum dimensions | |
if subimage_width > max_width or subimage_height > max_height: | |
# Calculate scaling factor | |
width_scale = max_width / subimage_width | |
height_scale = max_height / subimage_height | |
scale = min(width_scale, height_scale) | |
# Resize subimage | |
subimage = subimage.resize( | |
(int(subimage_width * scale), int(subimage_height * scale)) | |
) | |
# Calculate position to place the subimage | |
if subimage_position == "top-left": | |
subimage_x = 0 | |
subimage_y = 0 | |
elif subimage_position == "top-right": | |
subimage_x = main_width - subimage.width | |
subimage_y = 0 | |
elif subimage_position == "bottom-left": | |
subimage_x = 0 | |
subimage_y = main_height - subimage.height | |
elif subimage_position == "bottom-right": | |
subimage_x = main_width - subimage.width | |
subimage_y = main_height - subimage.height | |
else: | |
raise ValueError( | |
"Invalid subimage_position. Choose from 'top-left', 'top-right'," | |
" 'bottom-left', or 'bottom-right'." | |
) | |
return subimage, subimage_x, subimage_y | |
def create_image_with_text_and_subimages( | |
text, | |
subimages, | |
width, | |
height, | |
text_color, | |
background_color, | |
output_file | |
): | |
# Create an image with the specified resolution and background color | |
image = Image.new('RGB', (width, height), color=background_color) | |
# Initialize ImageDraw object | |
draw = ImageDraw.Draw(image) | |
# Load a font | |
font = ImageFont.load_default() # You can specify your font file here | |
# Calculate text size and position | |
text_bbox = draw.textbbox((0, 0), text, font=font) | |
text_width = text_bbox[2] - text_bbox[0] | |
text_height = text_bbox[3] - text_bbox[1] | |
text_x = (width - text_width) / 2 | |
text_y = (height - text_height) / 2 | |
# Draw text on the image | |
draw.text((text_x, text_y), text, fill=text_color, font=font) | |
# Paste subimages onto the main image | |
for subimage_path, subimage_position in subimages: | |
# Open the subimage | |
subimage = Image.open(subimage_path) | |
# Convert subimage to RGBA mode if it doesn't have an alpha channel | |
if subimage.mode != 'RGBA': | |
subimage = subimage.convert('RGBA') | |
# Resize and position the subimage | |
subimage, subimage_x, subimage_y = resize_and_position_subimage( | |
subimage, width / 4, height / 4, subimage_position, width, height | |
) | |
# Paste the subimage onto the main image | |
image.paste(subimage, (int(subimage_x), int(subimage_y)), subimage) | |
image.save(output_file) | |
return output_file | |
def doc_to_txtximg_pages( | |
document, | |
width, | |
height, | |
start_page, | |
end_page, | |
bcolor | |
): | |
from pypdf import PdfReader | |
images_folder = "pdf_images/" | |
os.makedirs(images_folder, exist_ok=True) | |
remove_directory_contents(images_folder) | |
# First image | |
text_image = os.path.basename(document)[:-4] | |
subimages = [("./assets/logo.jpeg", "top-left")] | |
text_color = (255, 255, 255) if bcolor == "black" else (0, 0, 0) # w|b | |
background_color = COLORS.get(bcolor, (255, 255, 255)) # dynamic white | |
first_image = "pdf_images/0000_00_aaa.png" | |
create_image_with_text_and_subimages( | |
text_image, | |
subimages, | |
width, | |
height, | |
text_color, | |
background_color, | |
first_image | |
) | |
reader = PdfReader(document) | |
logger.debug(f"Total pages: {reader.get_num_pages()}") | |
start_page_idx = max((start_page-1), 0) | |
end_page_inx = min((end_page), (reader.get_num_pages())) | |
document_pages = reader.pages[start_page_idx:end_page_inx] | |
logger.info( | |
f"Selected pages from {start_page_idx} to {end_page_inx}: " | |
f"{len(document_pages)}" | |
) | |
data_doc = {} | |
for i, page in enumerate(document_pages): | |
count = 0 | |
images = [] | |
for image_file_object in page.images: | |
img_name = f"{images_folder}{i:04d}_{count:02d}_{image_file_object.name}" | |
if not img_name.lower().endswith('.png'): | |
img_name = os.path.splitext(img_name)[0] + '.png' | |
images.append(img_name) | |
with open(img_name, "wb") as fp: | |
fp.write(image_file_object.data) | |
count += 1 | |
img_name = add_border_to_image(img_name, width, height, bcolor) | |
data_doc[i] = { | |
"text": remove_hyphens(page.extract_text()), | |
"images": images | |
} | |
return data_doc | |
def page_data_to_segments(result_text=None, chunk_size=None): | |
if not chunk_size: | |
chunk_size = 100 | |
segments_chunks = [] | |
time_global = 0 | |
for page, result_data in result_text.items(): | |
# result_image = result_data["images"] | |
result_text = result_data["text"] | |
text_chunks = split_text_into_chunks(result_text, chunk_size) | |
if not text_chunks: | |
text_chunks = [" "] | |
for chunk in text_chunks: | |
chunk_dict = { | |
"text": chunk, | |
"start": (1.0 + time_global), | |
"end": (2.0 + time_global), | |
"speaker": "SPEAKER_00", | |
"page": page, | |
} | |
segments_chunks.append(chunk_dict) | |
time_global += 1 | |
result_diarize = {"segments": segments_chunks} | |
return result_diarize | |
def update_page_data(result_diarize, doc_data): | |
complete_text = "" | |
current_page = result_diarize["segments"][0]["page"] | |
text_page = "" | |
for seg in result_diarize["segments"]: | |
text = seg["text"] + " " # issue | |
complete_text += text | |
page = seg["page"] | |
if page == current_page: | |
text_page += text | |
else: | |
doc_data[current_page]["text"] = text_page | |
# Next | |
text_page = text | |
current_page = page | |
if doc_data[current_page]["text"] != text_page: | |
doc_data[current_page]["text"] = text_page | |
return doc_data | |
def fix_timestamps_docs(result_diarize, audio_files): | |
current_start = 0.0 | |
for seg, audio in zip(result_diarize["segments"], audio_files): | |
duration = round(sf.info(audio).duration, 2) | |
seg["start"] = current_start | |
current_start += duration | |
seg["end"] = current_start | |
return result_diarize | |
def create_video_from_images( | |
doc_data, | |
result_diarize | |
): | |
# First image path | |
first_image = "pdf_images/0000_00_aaa.png" | |
# Time segments and images | |
max_pages_idx = len(doc_data) - 1 | |
current_page = result_diarize["segments"][0]["page"] | |
duration_page = 0.0 | |
last_image = None | |
for seg in result_diarize["segments"]: | |
start = seg["start"] | |
end = seg["end"] | |
duration_seg = end - start | |
page = seg["page"] | |
if page == current_page: | |
duration_page += duration_seg | |
else: | |
images = doc_data[current_page]["images"] | |
if first_image: | |
images = [first_image] + images | |
first_image = None | |
if not doc_data[min(max_pages_idx, (current_page+1))]["text"].strip(): | |
images = images + doc_data[min(max_pages_idx, (current_page+1))]["images"] | |
if not images and last_image: | |
images = [last_image] | |
# Calculate images duration | |
time_duration_per_image = round((duration_page / len(images)), 2) | |
doc_data[current_page]["time_per_image"] = time_duration_per_image | |
# Next values | |
doc_data[current_page]["images"] = images | |
last_image = images[-1] | |
duration_page = duration_seg | |
current_page = page | |
if "time_per_image" not in doc_data[current_page].keys(): | |
images = doc_data[current_page]["images"] | |
if first_image: | |
images = [first_image] + images | |
if not images: | |
images = [last_image] | |
time_duration_per_image = round((duration_page / len(images)), 2) | |
doc_data[current_page]["time_per_image"] = time_duration_per_image | |
# Timestamped image video. | |
with open("list.txt", "w") as file: | |
for i, page in enumerate(doc_data.values()): | |
duration = page["time_per_image"] | |
for img in page["images"]: | |
if i == len(doc_data) - 1 and img == page["images"][-1]: # Check if it's the last item | |
file.write(f"file {img}\n") | |
file.write(f"outpoint {duration}") | |
else: | |
file.write(f"file {img}\n") | |
file.write(f"outpoint {duration}\n") | |
out_video = "video_from_images.mp4" | |
remove_files(out_video) | |
cm = f"ffmpeg -y -f concat -i list.txt -c:v libx264 -preset veryfast -crf 18 -pix_fmt yuv420p {out_video}" | |
cm_alt = f"ffmpeg -f concat -i list.txt -c:v libx264 -r 30 -pix_fmt yuv420p -y {out_video}" | |
try: | |
run_command(cm) | |
except Exception as error: | |
logger.error(str(error)) | |
remove_files(out_video) | |
run_command(cm_alt) | |
return out_video | |
def merge_video_and_audio(video_doc, final_wav_file): | |
fixed_audio = "fixed_audio.mp3" | |
remove_files(fixed_audio) | |
cm = f"ffmpeg -i {final_wav_file} -c:a libmp3lame {fixed_audio}" | |
run_command(cm) | |
vid_out = "video_book.mp4" | |
remove_files(vid_out) | |
cm = f"ffmpeg -i {video_doc} -i {fixed_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {vid_out}" | |
run_command(cm) | |
return vid_out | |
# subtitles | |
def get_subtitle( | |
language, | |
segments_data, | |
extension, | |
filename=None, | |
highlight_words=False, | |
): | |
if not filename: | |
filename = "task_subtitle" | |
is_ass_extension = False | |
if extension == "ass": | |
is_ass_extension = True | |
extension = "srt" | |
sub_file = filename + "." + extension | |
support_name = filename + ".mp3" | |
remove_files(sub_file) | |
writer = get_writer(extension, output_dir=".") | |
word_options = { | |
"highlight_words": highlight_words, | |
"max_line_count": None, | |
"max_line_width": None, | |
} | |
# Get data subs | |
subtitle_data = copy.deepcopy(segments_data) | |
subtitle_data["language"] = ( | |
"ja" if language in ["ja", "zh", "zh-TW"] else language | |
) | |
# Clean | |
if not highlight_words: | |
subtitle_data.pop("word_segments", None) | |
for segment in subtitle_data["segments"]: | |
for key in ["speaker", "chars", "words"]: | |
segment.pop(key, None) | |
writer( | |
subtitle_data, | |
support_name, | |
word_options, | |
) | |
if is_ass_extension: | |
temp_name = filename + ".ass" | |
remove_files(temp_name) | |
convert_sub = f'ffmpeg -i "{sub_file}" "{temp_name}" -y' | |
run_command(convert_sub) | |
sub_file = temp_name | |
return sub_file | |
def process_subtitles( | |
deep_copied_result, | |
align_language, | |
result_diarize, | |
output_format_subtitle, | |
TRANSLATE_AUDIO_TO, | |
): | |
name_ori = "sub_ori." | |
name_tra = "sub_tra." | |
remove_files( | |
[name_ori + output_format_subtitle, name_tra + output_format_subtitle] | |
) | |
writer = get_writer(output_format_subtitle, output_dir=".") | |
word_options = { | |
"highlight_words": False, | |
"max_line_count": None, | |
"max_line_width": None, | |
} | |
# original lang | |
subs_copy_result = copy.deepcopy(deep_copied_result) | |
subs_copy_result["language"] = ( | |
"zh" if align_language == "zh-TW" else align_language | |
) | |
for segment in subs_copy_result["segments"]: | |
segment.pop("speaker", None) | |
try: | |
writer( | |
subs_copy_result, | |
name_ori[:-1] + ".mp3", | |
word_options, | |
) | |
except Exception as error: | |
logger.error(str(error)) | |
if str(error) == "list indices must be integers or slices, not str": | |
logger.error( | |
"Related to poor word segmentation" | |
" in segments after alignment." | |
) | |
subs_copy_result["segments"][0].pop("words") | |
writer( | |
subs_copy_result, | |
name_ori[:-1] + ".mp3", | |
word_options, | |
) | |
# translated lang | |
subs_tra_copy_result = copy.deepcopy(result_diarize) | |
subs_tra_copy_result["language"] = ( | |
"ja" if TRANSLATE_AUDIO_TO in ["ja", "zh", "zh-TW"] else align_language | |
) | |
subs_tra_copy_result.pop("word_segments", None) | |
for segment in subs_tra_copy_result["segments"]: | |
for key in ["speaker", "chars", "words"]: | |
segment.pop(key, None) | |
writer( | |
subs_tra_copy_result, | |
name_tra[:-1] + ".mp3", | |
word_options, | |
) | |
return name_tra + output_format_subtitle | |
def linguistic_level_segments( | |
result_base, | |
linguistic_unit="word", # word or char | |
): | |
linguistic_unit = linguistic_unit[:4] | |
linguistic_unit_key = linguistic_unit + "s" | |
result = copy.deepcopy(result_base) | |
if linguistic_unit_key not in result["segments"][0].keys(): | |
raise ValueError("No alignment detected, can't process") | |
segments_by_unit = [] | |
for segment in result["segments"]: | |
segment_units = segment[linguistic_unit_key] | |
# segment_speaker = segment.get("speaker", "SPEAKER_00") | |
for unit in segment_units: | |
text = unit[linguistic_unit] | |
if "start" in unit.keys(): | |
segments_by_unit.append( | |
{ | |
"start": unit["start"], | |
"end": unit["end"], | |
"text": text, | |
# "speaker": segment_speaker, | |
} | |
) | |
elif not segments_by_unit: | |
pass | |
else: | |
segments_by_unit[-1]["text"] += text | |
return {"segments": segments_by_unit} | |
def break_aling_segments( | |
result: dict, | |
break_characters: str = "", # ":|,|.|" | |
): | |
result_align = copy.deepcopy(result) | |
break_characters_list = break_characters.split("|") | |
break_characters_list = [i for i in break_characters_list if i != ''] | |
if not break_characters_list: | |
logger.info("No valid break characters were specified.") | |
return result | |
logger.info(f"Redivide text segments by: {str(break_characters_list)}") | |
# create new with filters | |
normal = [] | |
def process_chars(chars, letter_new_start, num, text): | |
start_key, end_key = "start", "end" | |
start_value = end_value = None | |
for char in chars: | |
if start_key in char: | |
start_value = char[start_key] | |
break | |
for char in reversed(chars): | |
if end_key in char: | |
end_value = char[end_key] | |
break | |
if not start_value or not end_value: | |
raise Exception( | |
f"Unable to obtain a valid timestamp for chars: {str(chars)}" | |
) | |
return { | |
"start": start_value, | |
"end": end_value, | |
"text": text, | |
"words": chars, | |
} | |
for i, segment in enumerate(result_align['segments']): | |
logger.debug(f"- Process segment: {i}, text: {segment['text']}") | |
# start = segment['start'] | |
letter_new_start = 0 | |
for num, char in enumerate(segment['chars']): | |
if char["char"] is None: | |
continue | |
# if "start" in char: | |
# start = char["start"] | |
# if "end" in char: | |
# end = char["end"] | |
# Break by character | |
if char['char'] in break_characters_list: | |
text = segment['text'][letter_new_start:num+1] | |
logger.debug( | |
f"Break in: {char['char']}, position: {num}, text: {text}" | |
) | |
chars = segment['chars'][letter_new_start:num+1] | |
if not text: | |
logger.debug("No text") | |
continue | |
if num == 0 and not text.strip(): | |
logger.debug("blank space in start") | |
continue | |
if len(text) == 1: | |
logger.debug(f"Short char append, num: {num}") | |
normal[-1]["text"] += text | |
normal[-1]["words"].append(chars) | |
continue | |
# logger.debug(chars) | |
normal_dict = process_chars(chars, letter_new_start, num, text) | |
letter_new_start = num+1 | |
normal.append(normal_dict) | |
# If we reach the end of the segment, add the last part of chars. | |
if num == len(segment["chars"]) - 1: | |
text = segment['text'][letter_new_start:num+1] | |
# If remain text len is not default len text | |
if num not in [len(text)-1, len(text)] and text: | |
logger.debug(f'Remaining text: {text}') | |
if not text: | |
logger.debug("No remaining text.") | |
continue | |
if len(text) == 1: | |
logger.debug(f"Short char append, num: {num}") | |
normal[-1]["text"] += text | |
normal[-1]["words"].append(chars) | |
continue | |
chars = segment['chars'][letter_new_start:num+1] | |
normal_dict = process_chars(chars, letter_new_start, num, text) | |
letter_new_start = num+1 | |
normal.append(normal_dict) | |
# Rename char to word | |
for item in normal: | |
words_list = item['words'] | |
for word_item in words_list: | |
if 'char' in word_item: | |
word_item['word'] = word_item.pop('char') | |
# Convert to dict default | |
break_segments = {"segments": normal} | |
msg_count = ( | |
f"Segment count before: {len(result['segments'])}, " | |
f"after: {len(break_segments['segments'])}." | |
) | |
logger.info(msg_count) | |
return break_segments |