Spaces:
Running
Running
hnthai
commited on
Commit
·
a9bd37f
1
Parent(s):
6ccaa09
first commit
Browse files- Pose_Video +1 -0
- app.py +75 -0
- configs/faster_rcnn_r50_fpn_1x_coco.py +228 -0
- configs/topdown_heatmap_hrnet_w48_coco_256x192.py +1129 -0
- examples/000001_mpiinew_test.mp4 +0 -0
- faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth +3 -0
- hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth +3 -0
- requirements.txt +7 -0
Pose_Video
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 6ccaa09c24051b0d9d4e8a9b9297e06dbc9102e6
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import gradio as gr
|
3 |
+
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
4 |
+
vis_pose_result, process_mmdet_results)
|
5 |
+
from mmdet.apis import inference_detector, init_detector
|
6 |
+
import mediapy
|
7 |
+
|
8 |
+
pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py'
|
9 |
+
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
|
10 |
+
det_config = 'configs/faster_rcnn_r50_fpn_1x_coco.py'
|
11 |
+
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
|
12 |
+
|
13 |
+
# initialize pose model
|
14 |
+
pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu')
|
15 |
+
# initialize detector
|
16 |
+
det_model = init_detector(det_config, det_checkpoint, device='cpu')
|
17 |
+
|
18 |
+
|
19 |
+
max_num_frames=120
|
20 |
+
def predict(video_path):
|
21 |
+
cap = cv2.VideoCapture(video_path)
|
22 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
23 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
24 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
25 |
+
|
26 |
+
preds_all = []
|
27 |
+
|
28 |
+
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
29 |
+
# out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
30 |
+
# writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
|
31 |
+
frames = []
|
32 |
+
|
33 |
+
for _ in range(max_num_frames):
|
34 |
+
ok, frame = cap.read()
|
35 |
+
if not ok:
|
36 |
+
break
|
37 |
+
rgb_frame = frame[:,:,::-1]
|
38 |
+
mmdet_results = inference_detector(det_model, rgb_frame)
|
39 |
+
person_results = process_mmdet_results(mmdet_results, cat_id=1)
|
40 |
+
pose_results, returned_outputs = inference_top_down_pose_model(
|
41 |
+
pose_model,
|
42 |
+
rgb_frame,
|
43 |
+
person_results,
|
44 |
+
bbox_thr=0.3,
|
45 |
+
format='xyxy',
|
46 |
+
dataset=pose_model.cfg.data.test.type)
|
47 |
+
vis_result = vis_pose_result(
|
48 |
+
pose_model,
|
49 |
+
rgb_frame,
|
50 |
+
pose_results,
|
51 |
+
dataset=pose_model.cfg.data.test.type,
|
52 |
+
show=False)
|
53 |
+
frames.append(vis_result)
|
54 |
+
cap.release()
|
55 |
+
# writer.release()
|
56 |
+
mediapy.write_video("out.mp4", frames, fps=fps)
|
57 |
+
return "out.mp4"
|
58 |
+
|
59 |
+
title = "Pose Estimation video"
|
60 |
+
description = ""
|
61 |
+
article = ""
|
62 |
+
|
63 |
+
example_list = ['examples/000001_mpiinew_test.mp4']
|
64 |
+
|
65 |
+
# Create the Gradio demo
|
66 |
+
demo = gr.Interface(fn=predict,
|
67 |
+
inputs=gr.Video(label='Input Video'),
|
68 |
+
outputs=gr.Video(label='Result'),
|
69 |
+
examples=example_list,
|
70 |
+
title=title,
|
71 |
+
description=description,
|
72 |
+
article=article)
|
73 |
+
|
74 |
+
# Launch the demo!
|
75 |
+
demo.queue().launch(show_api=False)
|
configs/faster_rcnn_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model = dict(
|
2 |
+
type='FasterRCNN',
|
3 |
+
backbone=dict(
|
4 |
+
type='ResNet',
|
5 |
+
depth=50,
|
6 |
+
num_stages=4,
|
7 |
+
out_indices=(0, 1, 2, 3),
|
8 |
+
frozen_stages=1,
|
9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
10 |
+
norm_eval=True,
|
11 |
+
style='pytorch',
|
12 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
13 |
+
neck=dict(
|
14 |
+
type='FPN',
|
15 |
+
in_channels=[256, 512, 1024, 2048],
|
16 |
+
out_channels=256,
|
17 |
+
num_outs=5),
|
18 |
+
rpn_head=dict(
|
19 |
+
type='RPNHead',
|
20 |
+
in_channels=256,
|
21 |
+
feat_channels=256,
|
22 |
+
anchor_generator=dict(
|
23 |
+
type='AnchorGenerator',
|
24 |
+
scales=[8],
|
25 |
+
ratios=[0.5, 1.0, 2.0],
|
26 |
+
strides=[4, 8, 16, 32, 64]),
|
27 |
+
bbox_coder=dict(
|
28 |
+
type='DeltaXYWHBBoxCoder',
|
29 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
30 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
31 |
+
loss_cls=dict(
|
32 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
33 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
34 |
+
roi_head=dict(
|
35 |
+
type='StandardRoIHead',
|
36 |
+
bbox_roi_extractor=dict(
|
37 |
+
type='SingleRoIExtractor',
|
38 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
39 |
+
out_channels=256,
|
40 |
+
featmap_strides=[4, 8, 16, 32]),
|
41 |
+
bbox_head=dict(
|
42 |
+
type='Shared2FCBBoxHead',
|
43 |
+
in_channels=256,
|
44 |
+
fc_out_channels=1024,
|
45 |
+
roi_feat_size=7,
|
46 |
+
num_classes=80,
|
47 |
+
bbox_coder=dict(
|
48 |
+
type='DeltaXYWHBBoxCoder',
|
49 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
50 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
51 |
+
reg_class_agnostic=False,
|
52 |
+
loss_cls=dict(
|
53 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
54 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
55 |
+
train_cfg=dict(
|
56 |
+
rpn=dict(
|
57 |
+
assigner=dict(
|
58 |
+
type='MaxIoUAssigner',
|
59 |
+
pos_iou_thr=0.7,
|
60 |
+
neg_iou_thr=0.3,
|
61 |
+
min_pos_iou=0.3,
|
62 |
+
match_low_quality=True,
|
63 |
+
ignore_iof_thr=-1),
|
64 |
+
sampler=dict(
|
65 |
+
type='RandomSampler',
|
66 |
+
num=256,
|
67 |
+
pos_fraction=0.5,
|
68 |
+
neg_pos_ub=-1,
|
69 |
+
add_gt_as_proposals=False),
|
70 |
+
allowed_border=-1,
|
71 |
+
pos_weight=-1,
|
72 |
+
debug=False),
|
73 |
+
rpn_proposal=dict(
|
74 |
+
nms_pre=2000,
|
75 |
+
max_per_img=1000,
|
76 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
77 |
+
min_bbox_size=0),
|
78 |
+
rcnn=dict(
|
79 |
+
assigner=dict(
|
80 |
+
type='MaxIoUAssigner',
|
81 |
+
pos_iou_thr=0.5,
|
82 |
+
neg_iou_thr=0.5,
|
83 |
+
min_pos_iou=0.5,
|
84 |
+
match_low_quality=False,
|
85 |
+
ignore_iof_thr=-1),
|
86 |
+
sampler=dict(
|
87 |
+
type='RandomSampler',
|
88 |
+
num=512,
|
89 |
+
pos_fraction=0.25,
|
90 |
+
neg_pos_ub=-1,
|
91 |
+
add_gt_as_proposals=True),
|
92 |
+
pos_weight=-1,
|
93 |
+
debug=False)),
|
94 |
+
test_cfg=dict(
|
95 |
+
rpn=dict(
|
96 |
+
nms_pre=1000,
|
97 |
+
max_per_img=1000,
|
98 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
99 |
+
min_bbox_size=0),
|
100 |
+
rcnn=dict(
|
101 |
+
score_thr=0.05,
|
102 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
103 |
+
max_per_img=100)))
|
104 |
+
dataset_type = 'CocoDataset'
|
105 |
+
data_root = 'data/coco/'
|
106 |
+
img_norm_cfg = dict(
|
107 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
108 |
+
train_pipeline = [
|
109 |
+
dict(type='LoadImageFromFile'),
|
110 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
111 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
112 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
113 |
+
dict(
|
114 |
+
type='Normalize',
|
115 |
+
mean=[123.675, 116.28, 103.53],
|
116 |
+
std=[58.395, 57.12, 57.375],
|
117 |
+
to_rgb=True),
|
118 |
+
dict(type='Pad', size_divisor=32),
|
119 |
+
dict(type='DefaultFormatBundle'),
|
120 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
121 |
+
]
|
122 |
+
test_pipeline = [
|
123 |
+
dict(type='LoadImageFromFile'),
|
124 |
+
dict(
|
125 |
+
type='MultiScaleFlipAug',
|
126 |
+
img_scale=(1333, 800),
|
127 |
+
flip=False,
|
128 |
+
transforms=[
|
129 |
+
dict(type='Resize', keep_ratio=True),
|
130 |
+
dict(type='RandomFlip'),
|
131 |
+
dict(
|
132 |
+
type='Normalize',
|
133 |
+
mean=[123.675, 116.28, 103.53],
|
134 |
+
std=[58.395, 57.12, 57.375],
|
135 |
+
to_rgb=True),
|
136 |
+
dict(type='Pad', size_divisor=32),
|
137 |
+
dict(type='ImageToTensor', keys=['img']),
|
138 |
+
dict(type='Collect', keys=['img'])
|
139 |
+
])
|
140 |
+
]
|
141 |
+
data = dict(
|
142 |
+
samples_per_gpu=2,
|
143 |
+
workers_per_gpu=2,
|
144 |
+
train=dict(
|
145 |
+
type='CocoDataset',
|
146 |
+
ann_file='data/coco/annotations/instances_train2017.json',
|
147 |
+
img_prefix='data/coco/train2017/',
|
148 |
+
pipeline=[
|
149 |
+
dict(type='LoadImageFromFile'),
|
150 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
151 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
152 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
153 |
+
dict(
|
154 |
+
type='Normalize',
|
155 |
+
mean=[123.675, 116.28, 103.53],
|
156 |
+
std=[58.395, 57.12, 57.375],
|
157 |
+
to_rgb=True),
|
158 |
+
dict(type='Pad', size_divisor=32),
|
159 |
+
dict(type='DefaultFormatBundle'),
|
160 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
161 |
+
]),
|
162 |
+
val=dict(
|
163 |
+
type='CocoDataset',
|
164 |
+
ann_file='data/coco/annotations/instances_val2017.json',
|
165 |
+
img_prefix='data/coco/val2017/',
|
166 |
+
pipeline=[
|
167 |
+
dict(type='LoadImageFromFile'),
|
168 |
+
dict(
|
169 |
+
type='MultiScaleFlipAug',
|
170 |
+
img_scale=(1333, 800),
|
171 |
+
flip=False,
|
172 |
+
transforms=[
|
173 |
+
dict(type='Resize', keep_ratio=True),
|
174 |
+
dict(type='RandomFlip'),
|
175 |
+
dict(
|
176 |
+
type='Normalize',
|
177 |
+
mean=[123.675, 116.28, 103.53],
|
178 |
+
std=[58.395, 57.12, 57.375],
|
179 |
+
to_rgb=True),
|
180 |
+
dict(type='Pad', size_divisor=32),
|
181 |
+
dict(type='ImageToTensor', keys=['img']),
|
182 |
+
dict(type='Collect', keys=['img'])
|
183 |
+
])
|
184 |
+
]),
|
185 |
+
test=dict(
|
186 |
+
type='CocoDataset',
|
187 |
+
ann_file='data/coco/annotations/instances_val2017.json',
|
188 |
+
img_prefix='data/coco/val2017/',
|
189 |
+
pipeline=[
|
190 |
+
dict(type='LoadImageFromFile'),
|
191 |
+
dict(
|
192 |
+
type='MultiScaleFlipAug',
|
193 |
+
img_scale=(1333, 800),
|
194 |
+
flip=False,
|
195 |
+
transforms=[
|
196 |
+
dict(type='Resize', keep_ratio=True),
|
197 |
+
dict(type='RandomFlip'),
|
198 |
+
dict(
|
199 |
+
type='Normalize',
|
200 |
+
mean=[123.675, 116.28, 103.53],
|
201 |
+
std=[58.395, 57.12, 57.375],
|
202 |
+
to_rgb=True),
|
203 |
+
dict(type='Pad', size_divisor=32),
|
204 |
+
dict(type='ImageToTensor', keys=['img']),
|
205 |
+
dict(type='Collect', keys=['img'])
|
206 |
+
])
|
207 |
+
]))
|
208 |
+
evaluation = dict(interval=1, metric='bbox')
|
209 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
210 |
+
optimizer_config = dict(grad_clip=None)
|
211 |
+
lr_config = dict(
|
212 |
+
policy='step',
|
213 |
+
warmup='linear',
|
214 |
+
warmup_iters=500,
|
215 |
+
warmup_ratio=0.001,
|
216 |
+
step=[8, 11])
|
217 |
+
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
218 |
+
checkpoint_config = dict(interval=1)
|
219 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
220 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
221 |
+
dist_params = dict(backend='nccl')
|
222 |
+
log_level = 'INFO'
|
223 |
+
load_from = None
|
224 |
+
resume_from = None
|
225 |
+
workflow = [('train', 1)]
|
226 |
+
opencv_num_threads = 0
|
227 |
+
mp_start_method = 'fork'
|
228 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
configs/topdown_heatmap_hrnet_w48_coco_256x192.py
ADDED
@@ -0,0 +1,1129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
checkpoint_config = dict(interval=10)
|
2 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
3 |
+
log_level = 'INFO'
|
4 |
+
load_from = None
|
5 |
+
resume_from = None
|
6 |
+
dist_params = dict(backend='nccl')
|
7 |
+
workflow = [('train', 1)]
|
8 |
+
opencv_num_threads = 0
|
9 |
+
mp_start_method = 'fork'
|
10 |
+
dataset_info = dict(
|
11 |
+
dataset_name='coco',
|
12 |
+
paper_info=dict(
|
13 |
+
author=
|
14 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
15 |
+
title='Microsoft coco: Common objects in context',
|
16 |
+
container='European conference on computer vision',
|
17 |
+
year='2014',
|
18 |
+
homepage='http://cocodataset.org/'),
|
19 |
+
keypoint_info=dict({
|
20 |
+
0:
|
21 |
+
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
|
22 |
+
1:
|
23 |
+
dict(
|
24 |
+
name='left_eye',
|
25 |
+
id=1,
|
26 |
+
color=[51, 153, 255],
|
27 |
+
type='upper',
|
28 |
+
swap='right_eye'),
|
29 |
+
2:
|
30 |
+
dict(
|
31 |
+
name='right_eye',
|
32 |
+
id=2,
|
33 |
+
color=[51, 153, 255],
|
34 |
+
type='upper',
|
35 |
+
swap='left_eye'),
|
36 |
+
3:
|
37 |
+
dict(
|
38 |
+
name='left_ear',
|
39 |
+
id=3,
|
40 |
+
color=[51, 153, 255],
|
41 |
+
type='upper',
|
42 |
+
swap='right_ear'),
|
43 |
+
4:
|
44 |
+
dict(
|
45 |
+
name='right_ear',
|
46 |
+
id=4,
|
47 |
+
color=[51, 153, 255],
|
48 |
+
type='upper',
|
49 |
+
swap='left_ear'),
|
50 |
+
5:
|
51 |
+
dict(
|
52 |
+
name='left_shoulder',
|
53 |
+
id=5,
|
54 |
+
color=[0, 255, 0],
|
55 |
+
type='upper',
|
56 |
+
swap='right_shoulder'),
|
57 |
+
6:
|
58 |
+
dict(
|
59 |
+
name='right_shoulder',
|
60 |
+
id=6,
|
61 |
+
color=[255, 128, 0],
|
62 |
+
type='upper',
|
63 |
+
swap='left_shoulder'),
|
64 |
+
7:
|
65 |
+
dict(
|
66 |
+
name='left_elbow',
|
67 |
+
id=7,
|
68 |
+
color=[0, 255, 0],
|
69 |
+
type='upper',
|
70 |
+
swap='right_elbow'),
|
71 |
+
8:
|
72 |
+
dict(
|
73 |
+
name='right_elbow',
|
74 |
+
id=8,
|
75 |
+
color=[255, 128, 0],
|
76 |
+
type='upper',
|
77 |
+
swap='left_elbow'),
|
78 |
+
9:
|
79 |
+
dict(
|
80 |
+
name='left_wrist',
|
81 |
+
id=9,
|
82 |
+
color=[0, 255, 0],
|
83 |
+
type='upper',
|
84 |
+
swap='right_wrist'),
|
85 |
+
10:
|
86 |
+
dict(
|
87 |
+
name='right_wrist',
|
88 |
+
id=10,
|
89 |
+
color=[255, 128, 0],
|
90 |
+
type='upper',
|
91 |
+
swap='left_wrist'),
|
92 |
+
11:
|
93 |
+
dict(
|
94 |
+
name='left_hip',
|
95 |
+
id=11,
|
96 |
+
color=[0, 255, 0],
|
97 |
+
type='lower',
|
98 |
+
swap='right_hip'),
|
99 |
+
12:
|
100 |
+
dict(
|
101 |
+
name='right_hip',
|
102 |
+
id=12,
|
103 |
+
color=[255, 128, 0],
|
104 |
+
type='lower',
|
105 |
+
swap='left_hip'),
|
106 |
+
13:
|
107 |
+
dict(
|
108 |
+
name='left_knee',
|
109 |
+
id=13,
|
110 |
+
color=[0, 255, 0],
|
111 |
+
type='lower',
|
112 |
+
swap='right_knee'),
|
113 |
+
14:
|
114 |
+
dict(
|
115 |
+
name='right_knee',
|
116 |
+
id=14,
|
117 |
+
color=[255, 128, 0],
|
118 |
+
type='lower',
|
119 |
+
swap='left_knee'),
|
120 |
+
15:
|
121 |
+
dict(
|
122 |
+
name='left_ankle',
|
123 |
+
id=15,
|
124 |
+
color=[0, 255, 0],
|
125 |
+
type='lower',
|
126 |
+
swap='right_ankle'),
|
127 |
+
16:
|
128 |
+
dict(
|
129 |
+
name='right_ankle',
|
130 |
+
id=16,
|
131 |
+
color=[255, 128, 0],
|
132 |
+
type='lower',
|
133 |
+
swap='left_ankle')
|
134 |
+
}),
|
135 |
+
skeleton_info=dict({
|
136 |
+
0:
|
137 |
+
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
138 |
+
1:
|
139 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
140 |
+
2:
|
141 |
+
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
|
142 |
+
3:
|
143 |
+
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
|
144 |
+
4:
|
145 |
+
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
|
146 |
+
5:
|
147 |
+
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
|
148 |
+
6:
|
149 |
+
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
|
150 |
+
7:
|
151 |
+
dict(
|
152 |
+
link=('left_shoulder', 'right_shoulder'),
|
153 |
+
id=7,
|
154 |
+
color=[51, 153, 255]),
|
155 |
+
8:
|
156 |
+
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
|
157 |
+
9:
|
158 |
+
dict(
|
159 |
+
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
|
160 |
+
10:
|
161 |
+
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
|
162 |
+
11:
|
163 |
+
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
|
164 |
+
12:
|
165 |
+
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
|
166 |
+
13:
|
167 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
168 |
+
14:
|
169 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
170 |
+
15:
|
171 |
+
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
|
172 |
+
16:
|
173 |
+
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
|
174 |
+
17:
|
175 |
+
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
|
176 |
+
18:
|
177 |
+
dict(
|
178 |
+
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255])
|
179 |
+
}),
|
180 |
+
joint_weights=[
|
181 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2,
|
182 |
+
1.2, 1.5, 1.5
|
183 |
+
],
|
184 |
+
sigmas=[
|
185 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
|
186 |
+
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
187 |
+
])
|
188 |
+
evaluation = dict(interval=10, metric='mAP', save_best='AP')
|
189 |
+
optimizer = dict(type='Adam', lr=0.0005)
|
190 |
+
optimizer_config = dict(grad_clip=None)
|
191 |
+
lr_config = dict(
|
192 |
+
policy='step',
|
193 |
+
warmup='linear',
|
194 |
+
warmup_iters=500,
|
195 |
+
warmup_ratio=0.001,
|
196 |
+
step=[170, 200])
|
197 |
+
total_epochs = 210
|
198 |
+
channel_cfg = dict(
|
199 |
+
num_output_channels=17,
|
200 |
+
dataset_joints=17,
|
201 |
+
dataset_channel=[[
|
202 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
203 |
+
]],
|
204 |
+
inference_channel=[
|
205 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
206 |
+
])
|
207 |
+
model = dict(
|
208 |
+
type='TopDown',
|
209 |
+
pretrained=
|
210 |
+
'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth',
|
211 |
+
backbone=dict(
|
212 |
+
type='HRNet',
|
213 |
+
in_channels=3,
|
214 |
+
extra=dict(
|
215 |
+
stage1=dict(
|
216 |
+
num_modules=1,
|
217 |
+
num_branches=1,
|
218 |
+
block='BOTTLENECK',
|
219 |
+
num_blocks=(4, ),
|
220 |
+
num_channels=(64, )),
|
221 |
+
stage2=dict(
|
222 |
+
num_modules=1,
|
223 |
+
num_branches=2,
|
224 |
+
block='BASIC',
|
225 |
+
num_blocks=(4, 4),
|
226 |
+
num_channels=(48, 96)),
|
227 |
+
stage3=dict(
|
228 |
+
num_modules=4,
|
229 |
+
num_branches=3,
|
230 |
+
block='BASIC',
|
231 |
+
num_blocks=(4, 4, 4),
|
232 |
+
num_channels=(48, 96, 192)),
|
233 |
+
stage4=dict(
|
234 |
+
num_modules=3,
|
235 |
+
num_branches=4,
|
236 |
+
block='BASIC',
|
237 |
+
num_blocks=(4, 4, 4, 4),
|
238 |
+
num_channels=(48, 96, 192, 384)))),
|
239 |
+
keypoint_head=dict(
|
240 |
+
type='TopdownHeatmapSimpleHead',
|
241 |
+
in_channels=48,
|
242 |
+
out_channels=17,
|
243 |
+
num_deconv_layers=0,
|
244 |
+
extra=dict(final_conv_kernel=1),
|
245 |
+
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
|
246 |
+
train_cfg=dict(),
|
247 |
+
test_cfg=dict(
|
248 |
+
flip_test=True,
|
249 |
+
post_process='default',
|
250 |
+
shift_heatmap=True,
|
251 |
+
modulate_kernel=11))
|
252 |
+
data_cfg = dict(
|
253 |
+
image_size=[192, 256],
|
254 |
+
heatmap_size=[48, 64],
|
255 |
+
num_output_channels=17,
|
256 |
+
num_joints=17,
|
257 |
+
dataset_channel=[[
|
258 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
259 |
+
]],
|
260 |
+
inference_channel=[
|
261 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
262 |
+
],
|
263 |
+
soft_nms=False,
|
264 |
+
nms_thr=1.0,
|
265 |
+
oks_thr=0.9,
|
266 |
+
vis_thr=0.2,
|
267 |
+
use_gt_bbox=False,
|
268 |
+
det_bbox_thr=0.0,
|
269 |
+
bbox_file=
|
270 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
271 |
+
)
|
272 |
+
train_pipeline = [
|
273 |
+
dict(type='LoadImageFromFile'),
|
274 |
+
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
275 |
+
dict(
|
276 |
+
type='TopDownHalfBodyTransform',
|
277 |
+
num_joints_half_body=8,
|
278 |
+
prob_half_body=0.3),
|
279 |
+
dict(
|
280 |
+
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
|
281 |
+
dict(type='TopDownAffine'),
|
282 |
+
dict(type='ToTensor'),
|
283 |
+
dict(
|
284 |
+
type='NormalizeTensor',
|
285 |
+
mean=[0.485, 0.456, 0.406],
|
286 |
+
std=[0.229, 0.224, 0.225]),
|
287 |
+
dict(type='TopDownGenerateTarget', sigma=2),
|
288 |
+
dict(
|
289 |
+
type='Collect',
|
290 |
+
keys=['img', 'target', 'target_weight'],
|
291 |
+
meta_keys=[
|
292 |
+
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
|
293 |
+
'rotation', 'bbox_score', 'flip_pairs'
|
294 |
+
])
|
295 |
+
]
|
296 |
+
val_pipeline = [
|
297 |
+
dict(type='LoadImageFromFile'),
|
298 |
+
dict(type='TopDownAffine'),
|
299 |
+
dict(type='ToTensor'),
|
300 |
+
dict(
|
301 |
+
type='NormalizeTensor',
|
302 |
+
mean=[0.485, 0.456, 0.406],
|
303 |
+
std=[0.229, 0.224, 0.225]),
|
304 |
+
dict(
|
305 |
+
type='Collect',
|
306 |
+
keys=['img'],
|
307 |
+
meta_keys=[
|
308 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
309 |
+
'flip_pairs'
|
310 |
+
])
|
311 |
+
]
|
312 |
+
test_pipeline = [
|
313 |
+
dict(type='LoadImageFromFile'),
|
314 |
+
dict(type='TopDownAffine'),
|
315 |
+
dict(type='ToTensor'),
|
316 |
+
dict(
|
317 |
+
type='NormalizeTensor',
|
318 |
+
mean=[0.485, 0.456, 0.406],
|
319 |
+
std=[0.229, 0.224, 0.225]),
|
320 |
+
dict(
|
321 |
+
type='Collect',
|
322 |
+
keys=['img'],
|
323 |
+
meta_keys=[
|
324 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
325 |
+
'flip_pairs'
|
326 |
+
])
|
327 |
+
]
|
328 |
+
data_root = 'data/coco'
|
329 |
+
data = dict(
|
330 |
+
samples_per_gpu=32,
|
331 |
+
workers_per_gpu=2,
|
332 |
+
val_dataloader=dict(samples_per_gpu=32),
|
333 |
+
test_dataloader=dict(samples_per_gpu=32),
|
334 |
+
train=dict(
|
335 |
+
type='TopDownCocoDataset',
|
336 |
+
ann_file='data/coco/annotations/person_keypoints_train2017.json',
|
337 |
+
img_prefix='data/coco/train2017/',
|
338 |
+
data_cfg=dict(
|
339 |
+
image_size=[192, 256],
|
340 |
+
heatmap_size=[48, 64],
|
341 |
+
num_output_channels=17,
|
342 |
+
num_joints=17,
|
343 |
+
dataset_channel=[[
|
344 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
345 |
+
]],
|
346 |
+
inference_channel=[
|
347 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
348 |
+
],
|
349 |
+
soft_nms=False,
|
350 |
+
nms_thr=1.0,
|
351 |
+
oks_thr=0.9,
|
352 |
+
vis_thr=0.2,
|
353 |
+
use_gt_bbox=False,
|
354 |
+
det_bbox_thr=0.0,
|
355 |
+
bbox_file=
|
356 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
357 |
+
),
|
358 |
+
pipeline=[
|
359 |
+
dict(type='LoadImageFromFile'),
|
360 |
+
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
361 |
+
dict(
|
362 |
+
type='TopDownHalfBodyTransform',
|
363 |
+
num_joints_half_body=8,
|
364 |
+
prob_half_body=0.3),
|
365 |
+
dict(
|
366 |
+
type='TopDownGetRandomScaleRotation',
|
367 |
+
rot_factor=40,
|
368 |
+
scale_factor=0.5),
|
369 |
+
dict(type='TopDownAffine'),
|
370 |
+
dict(type='ToTensor'),
|
371 |
+
dict(
|
372 |
+
type='NormalizeTensor',
|
373 |
+
mean=[0.485, 0.456, 0.406],
|
374 |
+
std=[0.229, 0.224, 0.225]),
|
375 |
+
dict(type='TopDownGenerateTarget', sigma=2),
|
376 |
+
dict(
|
377 |
+
type='Collect',
|
378 |
+
keys=['img', 'target', 'target_weight'],
|
379 |
+
meta_keys=[
|
380 |
+
'image_file', 'joints_3d', 'joints_3d_visible', 'center',
|
381 |
+
'scale', 'rotation', 'bbox_score', 'flip_pairs'
|
382 |
+
])
|
383 |
+
],
|
384 |
+
dataset_info=dict(
|
385 |
+
dataset_name='coco',
|
386 |
+
paper_info=dict(
|
387 |
+
author=
|
388 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
389 |
+
title='Microsoft coco: Common objects in context',
|
390 |
+
container='European conference on computer vision',
|
391 |
+
year='2014',
|
392 |
+
homepage='http://cocodataset.org/'),
|
393 |
+
keypoint_info=dict({
|
394 |
+
0:
|
395 |
+
dict(
|
396 |
+
name='nose',
|
397 |
+
id=0,
|
398 |
+
color=[51, 153, 255],
|
399 |
+
type='upper',
|
400 |
+
swap=''),
|
401 |
+
1:
|
402 |
+
dict(
|
403 |
+
name='left_eye',
|
404 |
+
id=1,
|
405 |
+
color=[51, 153, 255],
|
406 |
+
type='upper',
|
407 |
+
swap='right_eye'),
|
408 |
+
2:
|
409 |
+
dict(
|
410 |
+
name='right_eye',
|
411 |
+
id=2,
|
412 |
+
color=[51, 153, 255],
|
413 |
+
type='upper',
|
414 |
+
swap='left_eye'),
|
415 |
+
3:
|
416 |
+
dict(
|
417 |
+
name='left_ear',
|
418 |
+
id=3,
|
419 |
+
color=[51, 153, 255],
|
420 |
+
type='upper',
|
421 |
+
swap='right_ear'),
|
422 |
+
4:
|
423 |
+
dict(
|
424 |
+
name='right_ear',
|
425 |
+
id=4,
|
426 |
+
color=[51, 153, 255],
|
427 |
+
type='upper',
|
428 |
+
swap='left_ear'),
|
429 |
+
5:
|
430 |
+
dict(
|
431 |
+
name='left_shoulder',
|
432 |
+
id=5,
|
433 |
+
color=[0, 255, 0],
|
434 |
+
type='upper',
|
435 |
+
swap='right_shoulder'),
|
436 |
+
6:
|
437 |
+
dict(
|
438 |
+
name='right_shoulder',
|
439 |
+
id=6,
|
440 |
+
color=[255, 128, 0],
|
441 |
+
type='upper',
|
442 |
+
swap='left_shoulder'),
|
443 |
+
7:
|
444 |
+
dict(
|
445 |
+
name='left_elbow',
|
446 |
+
id=7,
|
447 |
+
color=[0, 255, 0],
|
448 |
+
type='upper',
|
449 |
+
swap='right_elbow'),
|
450 |
+
8:
|
451 |
+
dict(
|
452 |
+
name='right_elbow',
|
453 |
+
id=8,
|
454 |
+
color=[255, 128, 0],
|
455 |
+
type='upper',
|
456 |
+
swap='left_elbow'),
|
457 |
+
9:
|
458 |
+
dict(
|
459 |
+
name='left_wrist',
|
460 |
+
id=9,
|
461 |
+
color=[0, 255, 0],
|
462 |
+
type='upper',
|
463 |
+
swap='right_wrist'),
|
464 |
+
10:
|
465 |
+
dict(
|
466 |
+
name='right_wrist',
|
467 |
+
id=10,
|
468 |
+
color=[255, 128, 0],
|
469 |
+
type='upper',
|
470 |
+
swap='left_wrist'),
|
471 |
+
11:
|
472 |
+
dict(
|
473 |
+
name='left_hip',
|
474 |
+
id=11,
|
475 |
+
color=[0, 255, 0],
|
476 |
+
type='lower',
|
477 |
+
swap='right_hip'),
|
478 |
+
12:
|
479 |
+
dict(
|
480 |
+
name='right_hip',
|
481 |
+
id=12,
|
482 |
+
color=[255, 128, 0],
|
483 |
+
type='lower',
|
484 |
+
swap='left_hip'),
|
485 |
+
13:
|
486 |
+
dict(
|
487 |
+
name='left_knee',
|
488 |
+
id=13,
|
489 |
+
color=[0, 255, 0],
|
490 |
+
type='lower',
|
491 |
+
swap='right_knee'),
|
492 |
+
14:
|
493 |
+
dict(
|
494 |
+
name='right_knee',
|
495 |
+
id=14,
|
496 |
+
color=[255, 128, 0],
|
497 |
+
type='lower',
|
498 |
+
swap='left_knee'),
|
499 |
+
15:
|
500 |
+
dict(
|
501 |
+
name='left_ankle',
|
502 |
+
id=15,
|
503 |
+
color=[0, 255, 0],
|
504 |
+
type='lower',
|
505 |
+
swap='right_ankle'),
|
506 |
+
16:
|
507 |
+
dict(
|
508 |
+
name='right_ankle',
|
509 |
+
id=16,
|
510 |
+
color=[255, 128, 0],
|
511 |
+
type='lower',
|
512 |
+
swap='left_ankle')
|
513 |
+
}),
|
514 |
+
skeleton_info=dict({
|
515 |
+
0:
|
516 |
+
dict(
|
517 |
+
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
518 |
+
1:
|
519 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
520 |
+
2:
|
521 |
+
dict(
|
522 |
+
link=('right_ankle', 'right_knee'),
|
523 |
+
id=2,
|
524 |
+
color=[255, 128, 0]),
|
525 |
+
3:
|
526 |
+
dict(
|
527 |
+
link=('right_knee', 'right_hip'),
|
528 |
+
id=3,
|
529 |
+
color=[255, 128, 0]),
|
530 |
+
4:
|
531 |
+
dict(
|
532 |
+
link=('left_hip', 'right_hip'), id=4, color=[51, 153,
|
533 |
+
255]),
|
534 |
+
5:
|
535 |
+
dict(
|
536 |
+
link=('left_shoulder', 'left_hip'),
|
537 |
+
id=5,
|
538 |
+
color=[51, 153, 255]),
|
539 |
+
6:
|
540 |
+
dict(
|
541 |
+
link=('right_shoulder', 'right_hip'),
|
542 |
+
id=6,
|
543 |
+
color=[51, 153, 255]),
|
544 |
+
7:
|
545 |
+
dict(
|
546 |
+
link=('left_shoulder', 'right_shoulder'),
|
547 |
+
id=7,
|
548 |
+
color=[51, 153, 255]),
|
549 |
+
8:
|
550 |
+
dict(
|
551 |
+
link=('left_shoulder', 'left_elbow'),
|
552 |
+
id=8,
|
553 |
+
color=[0, 255, 0]),
|
554 |
+
9:
|
555 |
+
dict(
|
556 |
+
link=('right_shoulder', 'right_elbow'),
|
557 |
+
id=9,
|
558 |
+
color=[255, 128, 0]),
|
559 |
+
10:
|
560 |
+
dict(
|
561 |
+
link=('left_elbow', 'left_wrist'),
|
562 |
+
id=10,
|
563 |
+
color=[0, 255, 0]),
|
564 |
+
11:
|
565 |
+
dict(
|
566 |
+
link=('right_elbow', 'right_wrist'),
|
567 |
+
id=11,
|
568 |
+
color=[255, 128, 0]),
|
569 |
+
12:
|
570 |
+
dict(
|
571 |
+
link=('left_eye', 'right_eye'),
|
572 |
+
id=12,
|
573 |
+
color=[51, 153, 255]),
|
574 |
+
13:
|
575 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
576 |
+
14:
|
577 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
578 |
+
15:
|
579 |
+
dict(
|
580 |
+
link=('left_eye', 'left_ear'), id=15, color=[51, 153,
|
581 |
+
255]),
|
582 |
+
16:
|
583 |
+
dict(
|
584 |
+
link=('right_eye', 'right_ear'),
|
585 |
+
id=16,
|
586 |
+
color=[51, 153, 255]),
|
587 |
+
17:
|
588 |
+
dict(
|
589 |
+
link=('left_ear', 'left_shoulder'),
|
590 |
+
id=17,
|
591 |
+
color=[51, 153, 255]),
|
592 |
+
18:
|
593 |
+
dict(
|
594 |
+
link=('right_ear', 'right_shoulder'),
|
595 |
+
id=18,
|
596 |
+
color=[51, 153, 255])
|
597 |
+
}),
|
598 |
+
joint_weights=[
|
599 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0,
|
600 |
+
1.0, 1.2, 1.2, 1.5, 1.5
|
601 |
+
],
|
602 |
+
sigmas=[
|
603 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,
|
604 |
+
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
605 |
+
])),
|
606 |
+
val=dict(
|
607 |
+
type='TopDownCocoDataset',
|
608 |
+
ann_file='data/coco/annotations/person_keypoints_val2017.json',
|
609 |
+
img_prefix='data/coco/val2017/',
|
610 |
+
data_cfg=dict(
|
611 |
+
image_size=[192, 256],
|
612 |
+
heatmap_size=[48, 64],
|
613 |
+
num_output_channels=17,
|
614 |
+
num_joints=17,
|
615 |
+
dataset_channel=[[
|
616 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
617 |
+
]],
|
618 |
+
inference_channel=[
|
619 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
620 |
+
],
|
621 |
+
soft_nms=False,
|
622 |
+
nms_thr=1.0,
|
623 |
+
oks_thr=0.9,
|
624 |
+
vis_thr=0.2,
|
625 |
+
use_gt_bbox=False,
|
626 |
+
det_bbox_thr=0.0,
|
627 |
+
bbox_file=
|
628 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
629 |
+
),
|
630 |
+
pipeline=[
|
631 |
+
dict(type='LoadImageFromFile'),
|
632 |
+
dict(type='TopDownAffine'),
|
633 |
+
dict(type='ToTensor'),
|
634 |
+
dict(
|
635 |
+
type='NormalizeTensor',
|
636 |
+
mean=[0.485, 0.456, 0.406],
|
637 |
+
std=[0.229, 0.224, 0.225]),
|
638 |
+
dict(
|
639 |
+
type='Collect',
|
640 |
+
keys=['img'],
|
641 |
+
meta_keys=[
|
642 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
643 |
+
'flip_pairs'
|
644 |
+
])
|
645 |
+
],
|
646 |
+
dataset_info=dict(
|
647 |
+
dataset_name='coco',
|
648 |
+
paper_info=dict(
|
649 |
+
author=
|
650 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
651 |
+
title='Microsoft coco: Common objects in context',
|
652 |
+
container='European conference on computer vision',
|
653 |
+
year='2014',
|
654 |
+
homepage='http://cocodataset.org/'),
|
655 |
+
keypoint_info=dict({
|
656 |
+
0:
|
657 |
+
dict(
|
658 |
+
name='nose',
|
659 |
+
id=0,
|
660 |
+
color=[51, 153, 255],
|
661 |
+
type='upper',
|
662 |
+
swap=''),
|
663 |
+
1:
|
664 |
+
dict(
|
665 |
+
name='left_eye',
|
666 |
+
id=1,
|
667 |
+
color=[51, 153, 255],
|
668 |
+
type='upper',
|
669 |
+
swap='right_eye'),
|
670 |
+
2:
|
671 |
+
dict(
|
672 |
+
name='right_eye',
|
673 |
+
id=2,
|
674 |
+
color=[51, 153, 255],
|
675 |
+
type='upper',
|
676 |
+
swap='left_eye'),
|
677 |
+
3:
|
678 |
+
dict(
|
679 |
+
name='left_ear',
|
680 |
+
id=3,
|
681 |
+
color=[51, 153, 255],
|
682 |
+
type='upper',
|
683 |
+
swap='right_ear'),
|
684 |
+
4:
|
685 |
+
dict(
|
686 |
+
name='right_ear',
|
687 |
+
id=4,
|
688 |
+
color=[51, 153, 255],
|
689 |
+
type='upper',
|
690 |
+
swap='left_ear'),
|
691 |
+
5:
|
692 |
+
dict(
|
693 |
+
name='left_shoulder',
|
694 |
+
id=5,
|
695 |
+
color=[0, 255, 0],
|
696 |
+
type='upper',
|
697 |
+
swap='right_shoulder'),
|
698 |
+
6:
|
699 |
+
dict(
|
700 |
+
name='right_shoulder',
|
701 |
+
id=6,
|
702 |
+
color=[255, 128, 0],
|
703 |
+
type='upper',
|
704 |
+
swap='left_shoulder'),
|
705 |
+
7:
|
706 |
+
dict(
|
707 |
+
name='left_elbow',
|
708 |
+
id=7,
|
709 |
+
color=[0, 255, 0],
|
710 |
+
type='upper',
|
711 |
+
swap='right_elbow'),
|
712 |
+
8:
|
713 |
+
dict(
|
714 |
+
name='right_elbow',
|
715 |
+
id=8,
|
716 |
+
color=[255, 128, 0],
|
717 |
+
type='upper',
|
718 |
+
swap='left_elbow'),
|
719 |
+
9:
|
720 |
+
dict(
|
721 |
+
name='left_wrist',
|
722 |
+
id=9,
|
723 |
+
color=[0, 255, 0],
|
724 |
+
type='upper',
|
725 |
+
swap='right_wrist'),
|
726 |
+
10:
|
727 |
+
dict(
|
728 |
+
name='right_wrist',
|
729 |
+
id=10,
|
730 |
+
color=[255, 128, 0],
|
731 |
+
type='upper',
|
732 |
+
swap='left_wrist'),
|
733 |
+
11:
|
734 |
+
dict(
|
735 |
+
name='left_hip',
|
736 |
+
id=11,
|
737 |
+
color=[0, 255, 0],
|
738 |
+
type='lower',
|
739 |
+
swap='right_hip'),
|
740 |
+
12:
|
741 |
+
dict(
|
742 |
+
name='right_hip',
|
743 |
+
id=12,
|
744 |
+
color=[255, 128, 0],
|
745 |
+
type='lower',
|
746 |
+
swap='left_hip'),
|
747 |
+
13:
|
748 |
+
dict(
|
749 |
+
name='left_knee',
|
750 |
+
id=13,
|
751 |
+
color=[0, 255, 0],
|
752 |
+
type='lower',
|
753 |
+
swap='right_knee'),
|
754 |
+
14:
|
755 |
+
dict(
|
756 |
+
name='right_knee',
|
757 |
+
id=14,
|
758 |
+
color=[255, 128, 0],
|
759 |
+
type='lower',
|
760 |
+
swap='left_knee'),
|
761 |
+
15:
|
762 |
+
dict(
|
763 |
+
name='left_ankle',
|
764 |
+
id=15,
|
765 |
+
color=[0, 255, 0],
|
766 |
+
type='lower',
|
767 |
+
swap='right_ankle'),
|
768 |
+
16:
|
769 |
+
dict(
|
770 |
+
name='right_ankle',
|
771 |
+
id=16,
|
772 |
+
color=[255, 128, 0],
|
773 |
+
type='lower',
|
774 |
+
swap='left_ankle')
|
775 |
+
}),
|
776 |
+
skeleton_info=dict({
|
777 |
+
0:
|
778 |
+
dict(
|
779 |
+
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
780 |
+
1:
|
781 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
782 |
+
2:
|
783 |
+
dict(
|
784 |
+
link=('right_ankle', 'right_knee'),
|
785 |
+
id=2,
|
786 |
+
color=[255, 128, 0]),
|
787 |
+
3:
|
788 |
+
dict(
|
789 |
+
link=('right_knee', 'right_hip'),
|
790 |
+
id=3,
|
791 |
+
color=[255, 128, 0]),
|
792 |
+
4:
|
793 |
+
dict(
|
794 |
+
link=('left_hip', 'right_hip'), id=4, color=[51, 153,
|
795 |
+
255]),
|
796 |
+
5:
|
797 |
+
dict(
|
798 |
+
link=('left_shoulder', 'left_hip'),
|
799 |
+
id=5,
|
800 |
+
color=[51, 153, 255]),
|
801 |
+
6:
|
802 |
+
dict(
|
803 |
+
link=('right_shoulder', 'right_hip'),
|
804 |
+
id=6,
|
805 |
+
color=[51, 153, 255]),
|
806 |
+
7:
|
807 |
+
dict(
|
808 |
+
link=('left_shoulder', 'right_shoulder'),
|
809 |
+
id=7,
|
810 |
+
color=[51, 153, 255]),
|
811 |
+
8:
|
812 |
+
dict(
|
813 |
+
link=('left_shoulder', 'left_elbow'),
|
814 |
+
id=8,
|
815 |
+
color=[0, 255, 0]),
|
816 |
+
9:
|
817 |
+
dict(
|
818 |
+
link=('right_shoulder', 'right_elbow'),
|
819 |
+
id=9,
|
820 |
+
color=[255, 128, 0]),
|
821 |
+
10:
|
822 |
+
dict(
|
823 |
+
link=('left_elbow', 'left_wrist'),
|
824 |
+
id=10,
|
825 |
+
color=[0, 255, 0]),
|
826 |
+
11:
|
827 |
+
dict(
|
828 |
+
link=('right_elbow', 'right_wrist'),
|
829 |
+
id=11,
|
830 |
+
color=[255, 128, 0]),
|
831 |
+
12:
|
832 |
+
dict(
|
833 |
+
link=('left_eye', 'right_eye'),
|
834 |
+
id=12,
|
835 |
+
color=[51, 153, 255]),
|
836 |
+
13:
|
837 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
838 |
+
14:
|
839 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
840 |
+
15:
|
841 |
+
dict(
|
842 |
+
link=('left_eye', 'left_ear'), id=15, color=[51, 153,
|
843 |
+
255]),
|
844 |
+
16:
|
845 |
+
dict(
|
846 |
+
link=('right_eye', 'right_ear'),
|
847 |
+
id=16,
|
848 |
+
color=[51, 153, 255]),
|
849 |
+
17:
|
850 |
+
dict(
|
851 |
+
link=('left_ear', 'left_shoulder'),
|
852 |
+
id=17,
|
853 |
+
color=[51, 153, 255]),
|
854 |
+
18:
|
855 |
+
dict(
|
856 |
+
link=('right_ear', 'right_shoulder'),
|
857 |
+
id=18,
|
858 |
+
color=[51, 153, 255])
|
859 |
+
}),
|
860 |
+
joint_weights=[
|
861 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0,
|
862 |
+
1.0, 1.2, 1.2, 1.5, 1.5
|
863 |
+
],
|
864 |
+
sigmas=[
|
865 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,
|
866 |
+
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
867 |
+
])),
|
868 |
+
test=dict(
|
869 |
+
type='TopDownCocoDataset',
|
870 |
+
ann_file='data/coco/annotations/person_keypoints_val2017.json',
|
871 |
+
img_prefix='data/coco/val2017/',
|
872 |
+
data_cfg=dict(
|
873 |
+
image_size=[192, 256],
|
874 |
+
heatmap_size=[48, 64],
|
875 |
+
num_output_channels=17,
|
876 |
+
num_joints=17,
|
877 |
+
dataset_channel=[[
|
878 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
879 |
+
]],
|
880 |
+
inference_channel=[
|
881 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
882 |
+
],
|
883 |
+
soft_nms=False,
|
884 |
+
nms_thr=1.0,
|
885 |
+
oks_thr=0.9,
|
886 |
+
vis_thr=0.2,
|
887 |
+
use_gt_bbox=False,
|
888 |
+
det_bbox_thr=0.0,
|
889 |
+
bbox_file=
|
890 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
891 |
+
),
|
892 |
+
pipeline=[
|
893 |
+
dict(type='LoadImageFromFile'),
|
894 |
+
dict(type='TopDownAffine'),
|
895 |
+
dict(type='ToTensor'),
|
896 |
+
dict(
|
897 |
+
type='NormalizeTensor',
|
898 |
+
mean=[0.485, 0.456, 0.406],
|
899 |
+
std=[0.229, 0.224, 0.225]),
|
900 |
+
dict(
|
901 |
+
type='Collect',
|
902 |
+
keys=['img'],
|
903 |
+
meta_keys=[
|
904 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
905 |
+
'flip_pairs'
|
906 |
+
])
|
907 |
+
],
|
908 |
+
dataset_info=dict(
|
909 |
+
dataset_name='coco',
|
910 |
+
paper_info=dict(
|
911 |
+
author=
|
912 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
913 |
+
title='Microsoft coco: Common objects in context',
|
914 |
+
container='European conference on computer vision',
|
915 |
+
year='2014',
|
916 |
+
homepage='http://cocodataset.org/'),
|
917 |
+
keypoint_info=dict({
|
918 |
+
0:
|
919 |
+
dict(
|
920 |
+
name='nose',
|
921 |
+
id=0,
|
922 |
+
color=[51, 153, 255],
|
923 |
+
type='upper',
|
924 |
+
swap=''),
|
925 |
+
1:
|
926 |
+
dict(
|
927 |
+
name='left_eye',
|
928 |
+
id=1,
|
929 |
+
color=[51, 153, 255],
|
930 |
+
type='upper',
|
931 |
+
swap='right_eye'),
|
932 |
+
2:
|
933 |
+
dict(
|
934 |
+
name='right_eye',
|
935 |
+
id=2,
|
936 |
+
color=[51, 153, 255],
|
937 |
+
type='upper',
|
938 |
+
swap='left_eye'),
|
939 |
+
3:
|
940 |
+
dict(
|
941 |
+
name='left_ear',
|
942 |
+
id=3,
|
943 |
+
color=[51, 153, 255],
|
944 |
+
type='upper',
|
945 |
+
swap='right_ear'),
|
946 |
+
4:
|
947 |
+
dict(
|
948 |
+
name='right_ear',
|
949 |
+
id=4,
|
950 |
+
color=[51, 153, 255],
|
951 |
+
type='upper',
|
952 |
+
swap='left_ear'),
|
953 |
+
5:
|
954 |
+
dict(
|
955 |
+
name='left_shoulder',
|
956 |
+
id=5,
|
957 |
+
color=[0, 255, 0],
|
958 |
+
type='upper',
|
959 |
+
swap='right_shoulder'),
|
960 |
+
6:
|
961 |
+
dict(
|
962 |
+
name='right_shoulder',
|
963 |
+
id=6,
|
964 |
+
color=[255, 128, 0],
|
965 |
+
type='upper',
|
966 |
+
swap='left_shoulder'),
|
967 |
+
7:
|
968 |
+
dict(
|
969 |
+
name='left_elbow',
|
970 |
+
id=7,
|
971 |
+
color=[0, 255, 0],
|
972 |
+
type='upper',
|
973 |
+
swap='right_elbow'),
|
974 |
+
8:
|
975 |
+
dict(
|
976 |
+
name='right_elbow',
|
977 |
+
id=8,
|
978 |
+
color=[255, 128, 0],
|
979 |
+
type='upper',
|
980 |
+
swap='left_elbow'),
|
981 |
+
9:
|
982 |
+
dict(
|
983 |
+
name='left_wrist',
|
984 |
+
id=9,
|
985 |
+
color=[0, 255, 0],
|
986 |
+
type='upper',
|
987 |
+
swap='right_wrist'),
|
988 |
+
10:
|
989 |
+
dict(
|
990 |
+
name='right_wrist',
|
991 |
+
id=10,
|
992 |
+
color=[255, 128, 0],
|
993 |
+
type='upper',
|
994 |
+
swap='left_wrist'),
|
995 |
+
11:
|
996 |
+
dict(
|
997 |
+
name='left_hip',
|
998 |
+
id=11,
|
999 |
+
color=[0, 255, 0],
|
1000 |
+
type='lower',
|
1001 |
+
swap='right_hip'),
|
1002 |
+
12:
|
1003 |
+
dict(
|
1004 |
+
name='right_hip',
|
1005 |
+
id=12,
|
1006 |
+
color=[255, 128, 0],
|
1007 |
+
type='lower',
|
1008 |
+
swap='left_hip'),
|
1009 |
+
13:
|
1010 |
+
dict(
|
1011 |
+
name='left_knee',
|
1012 |
+
id=13,
|
1013 |
+
color=[0, 255, 0],
|
1014 |
+
type='lower',
|
1015 |
+
swap='right_knee'),
|
1016 |
+
14:
|
1017 |
+
dict(
|
1018 |
+
name='right_knee',
|
1019 |
+
id=14,
|
1020 |
+
color=[255, 128, 0],
|
1021 |
+
type='lower',
|
1022 |
+
swap='left_knee'),
|
1023 |
+
15:
|
1024 |
+
dict(
|
1025 |
+
name='left_ankle',
|
1026 |
+
id=15,
|
1027 |
+
color=[0, 255, 0],
|
1028 |
+
type='lower',
|
1029 |
+
swap='right_ankle'),
|
1030 |
+
16:
|
1031 |
+
dict(
|
1032 |
+
name='right_ankle',
|
1033 |
+
id=16,
|
1034 |
+
color=[255, 128, 0],
|
1035 |
+
type='lower',
|
1036 |
+
swap='left_ankle')
|
1037 |
+
}),
|
1038 |
+
skeleton_info=dict({
|
1039 |
+
0:
|
1040 |
+
dict(
|
1041 |
+
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
1042 |
+
1:
|
1043 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
1044 |
+
2:
|
1045 |
+
dict(
|
1046 |
+
link=('right_ankle', 'right_knee'),
|
1047 |
+
id=2,
|
1048 |
+
color=[255, 128, 0]),
|
1049 |
+
3:
|
1050 |
+
dict(
|
1051 |
+
link=('right_knee', 'right_hip'),
|
1052 |
+
id=3,
|
1053 |
+
color=[255, 128, 0]),
|
1054 |
+
4:
|
1055 |
+
dict(
|
1056 |
+
link=('left_hip', 'right_hip'), id=4, color=[51, 153,
|
1057 |
+
255]),
|
1058 |
+
5:
|
1059 |
+
dict(
|
1060 |
+
link=('left_shoulder', 'left_hip'),
|
1061 |
+
id=5,
|
1062 |
+
color=[51, 153, 255]),
|
1063 |
+
6:
|
1064 |
+
dict(
|
1065 |
+
link=('right_shoulder', 'right_hip'),
|
1066 |
+
id=6,
|
1067 |
+
color=[51, 153, 255]),
|
1068 |
+
7:
|
1069 |
+
dict(
|
1070 |
+
link=('left_shoulder', 'right_shoulder'),
|
1071 |
+
id=7,
|
1072 |
+
color=[51, 153, 255]),
|
1073 |
+
8:
|
1074 |
+
dict(
|
1075 |
+
link=('left_shoulder', 'left_elbow'),
|
1076 |
+
id=8,
|
1077 |
+
color=[0, 255, 0]),
|
1078 |
+
9:
|
1079 |
+
dict(
|
1080 |
+
link=('right_shoulder', 'right_elbow'),
|
1081 |
+
id=9,
|
1082 |
+
color=[255, 128, 0]),
|
1083 |
+
10:
|
1084 |
+
dict(
|
1085 |
+
link=('left_elbow', 'left_wrist'),
|
1086 |
+
id=10,
|
1087 |
+
color=[0, 255, 0]),
|
1088 |
+
11:
|
1089 |
+
dict(
|
1090 |
+
link=('right_elbow', 'right_wrist'),
|
1091 |
+
id=11,
|
1092 |
+
color=[255, 128, 0]),
|
1093 |
+
12:
|
1094 |
+
dict(
|
1095 |
+
link=('left_eye', 'right_eye'),
|
1096 |
+
id=12,
|
1097 |
+
color=[51, 153, 255]),
|
1098 |
+
13:
|
1099 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
1100 |
+
14:
|
1101 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
1102 |
+
15:
|
1103 |
+
dict(
|
1104 |
+
link=('left_eye', 'left_ear'), id=15, color=[51, 153,
|
1105 |
+
255]),
|
1106 |
+
16:
|
1107 |
+
dict(
|
1108 |
+
link=('right_eye', 'right_ear'),
|
1109 |
+
id=16,
|
1110 |
+
color=[51, 153, 255]),
|
1111 |
+
17:
|
1112 |
+
dict(
|
1113 |
+
link=('left_ear', 'left_shoulder'),
|
1114 |
+
id=17,
|
1115 |
+
color=[51, 153, 255]),
|
1116 |
+
18:
|
1117 |
+
dict(
|
1118 |
+
link=('right_ear', 'right_shoulder'),
|
1119 |
+
id=18,
|
1120 |
+
color=[51, 153, 255])
|
1121 |
+
}),
|
1122 |
+
joint_weights=[
|
1123 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0,
|
1124 |
+
1.0, 1.2, 1.2, 1.5, 1.5
|
1125 |
+
],
|
1126 |
+
sigmas=[
|
1127 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,
|
1128 |
+
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
1129 |
+
])))
|
examples/000001_mpiinew_test.mp4
ADDED
Binary file (159 kB). View file
|
|
faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:047c8118fc5ca88ba5ae1fab72f2cd6b070501fe3af2f3cba5cfa9a89b44b03e
|
3 |
+
size 167287506
|
hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e0b3ab0439cb68e166c7543e59d2587cd8d7e9acf5ea62a8378eeb82fb50e5
|
3 |
+
size 255011654
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mediapy
|
2 |
+
numpy==1.23.5
|
3 |
+
torch==1.11.0
|
4 |
+
torchvision==0.12.0
|
5 |
+
openmim==0.1.5
|
6 |
+
mmdet==2.24.1
|
7 |
+
mmpose==0.25.1
|