Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler, MinMaxScaler, RobustScaler
|
7 |
+
from sklearn.impute import KNNImputer
|
8 |
+
from scipy import stats
|
9 |
+
import plotly.express as px
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
from plotly.subplots import make_subplots
|
12 |
+
import warnings
|
13 |
+
import io
|
14 |
+
import base64
|
15 |
+
from datetime import datetime
|
16 |
+
import json
|
17 |
+
import statsmodels.api as sm
|
18 |
+
from statsmodels.stats.outliers_influence import variance_inflation_factor
|
19 |
+
from scipy.stats import chi2_contingency
|
20 |
+
|
21 |
+
warnings.filterwarnings('ignore')
|
22 |
+
|
23 |
+
|
24 |
+
class DataAnalyzer:
|
25 |
+
def __init__(self):
|
26 |
+
self.df = None
|
27 |
+
self.numeric_columns = None
|
28 |
+
self.categorical_columns = None
|
29 |
+
|
30 |
+
def load_data(self, file):
|
31 |
+
try:
|
32 |
+
self.df = pd.read_csv(file.name)
|
33 |
+
self._identify_column_types()
|
34 |
+
return "Veri başarıyla yüklendi!"
|
35 |
+
except Exception as e:
|
36 |
+
return f"Hata: {str(e)}"
|
37 |
+
|
38 |
+
def _identify_column_types(self):
|
39 |
+
self.numeric_columns = self.df.select_dtypes(include=[np.number]).columns
|
40 |
+
self.categorical_columns = self.df.select_dtypes(include=['object']).columns
|
41 |
+
|
42 |
+
def get_basic_info(self):
|
43 |
+
if self.df is None:
|
44 |
+
return "Önce veri yükleyin!"
|
45 |
+
|
46 |
+
info = []
|
47 |
+
info.append("### 1. Temel Veri Bilgileri")
|
48 |
+
info.append(f"Satır Sayısı: {self.df.shape[0]}")
|
49 |
+
info.append(f"Sütun Sayısı: {self.df.shape[1]}")
|
50 |
+
|
51 |
+
memory_usage = self.df.memory_usage(deep=True).sum()
|
52 |
+
info.append(f"Bellek Kullanımı: {memory_usage / 1024:.2f} KB")
|
53 |
+
|
54 |
+
# Veri tipleri
|
55 |
+
info.append("\n### 2. Veri Tipleri ve Örnekler")
|
56 |
+
for column in self.df.columns:
|
57 |
+
unique_count = self.df[column].nunique()
|
58 |
+
info.append(f"\n{column}:")
|
59 |
+
info.append(f" - Tip: {self.df[column].dtype}")
|
60 |
+
info.append(f" - Benzersiz Değer Sayısı: {unique_count}")
|
61 |
+
info.append(f" - İlk 3 Örnek: {', '.join(map(str, self.df[column].head(3)))}")
|
62 |
+
|
63 |
+
return "\n".join(info)
|
64 |
+
|
65 |
+
def analyze_missing_values(self):
|
66 |
+
if self.df is None:
|
67 |
+
return "Önce veri yükleyin!"
|
68 |
+
|
69 |
+
missing = pd.DataFrame({
|
70 |
+
'Eksik Sayı': self.df.isnull().sum(),
|
71 |
+
'Eksik Yüzde': (self.df.isnull().sum() / len(self.df) * 100).round(2)
|
72 |
+
})
|
73 |
+
|
74 |
+
# Eksik değer pattern analizi
|
75 |
+
missing_patterns = self.df.isnull().value_counts().head()
|
76 |
+
|
77 |
+
result = "### Eksik Değer Analizi\n\n"
|
78 |
+
result += missing.to_string()
|
79 |
+
result += "\n\n### Eksik Değer Örüntüleri (İlk 5)\n\n"
|
80 |
+
result += missing_patterns.to_string()
|
81 |
+
|
82 |
+
return result
|
83 |
+
|
84 |
+
def analyze_outliers(self, method='zscore', threshold=3):
|
85 |
+
if self.df is None:
|
86 |
+
return "Önce veri yükleyin!"
|
87 |
+
|
88 |
+
results = []
|
89 |
+
results.append("### Aykırı Değer Analizi\n")
|
90 |
+
|
91 |
+
for column in self.numeric_columns:
|
92 |
+
results.append(f"\n{column} analizi:")
|
93 |
+
|
94 |
+
if method == 'zscore':
|
95 |
+
z_scores = np.abs(stats.zscore(self.df[column].dropna()))
|
96 |
+
outliers = np.where(z_scores > threshold)[0]
|
97 |
+
results.append(f"Z-score metodu ile {len(outliers)} aykırı değer bulundu")
|
98 |
+
if len(outliers) > 0:
|
99 |
+
results.append(f"Aykırı değerler: {self.df[column].iloc[outliers].values[:5]}...")
|
100 |
+
|
101 |
+
elif method == 'iqr':
|
102 |
+
Q1 = self.df[column].quantile(0.25)
|
103 |
+
Q3 = self.df[column].quantile(0.75)
|
104 |
+
IQR = Q3 - Q1
|
105 |
+
outliers = self.df[(self.df[column] < (Q1 - 1.5 * IQR)) |
|
106 |
+
(self.df[column] > (Q3 + 1.5 * IQR))][column]
|
107 |
+
results.append(f"IQR metodu ile {len(outliers)} aykırı değer bulundu")
|
108 |
+
if len(outliers) > 0:
|
109 |
+
results.append(f"Aykırı değerler: {outliers.values[:5]}...")
|
110 |
+
|
111 |
+
# Temel istatistikler
|
112 |
+
stats_data = self.df[column].describe()
|
113 |
+
results.append("\nTemel İstatistikler:")
|
114 |
+
results.append(stats_data.to_string())
|
115 |
+
|
116 |
+
return "\n".join(results)
|
117 |
+
|
118 |
+
def analyze_correlations(self):
|
119 |
+
if self.df is None:
|
120 |
+
return "Önce veri yükleyin!"
|
121 |
+
|
122 |
+
# Sayısal değişkenler için korelasyon
|
123 |
+
numeric_corr = self.df[self.numeric_columns].corr()
|
124 |
+
|
125 |
+
# Kategorik değişkenler için Cramer's V
|
126 |
+
cat_correlations = []
|
127 |
+
for col1 in self.categorical_columns:
|
128 |
+
for col2 in self.categorical_columns:
|
129 |
+
if col1 < col2:
|
130 |
+
contingency = pd.crosstab(self.df[col1], self.df[col2])
|
131 |
+
chi2, _, _, _ = chi2_contingency(contingency)
|
132 |
+
n = contingency.sum().sum()
|
133 |
+
v = np.sqrt(chi2 / (n * min(contingency.shape[0] - 1, contingency.shape[1] - 1)))
|
134 |
+
cat_correlations.append(f"{col1} - {col2}: {v:.3f}")
|
135 |
+
|
136 |
+
result = "### Sayısal Değişkenler Arası Korelasyonlar\n\n"
|
137 |
+
result += numeric_corr.round(3).to_string()
|
138 |
+
|
139 |
+
if cat_correlations:
|
140 |
+
result += "\n\n### Kategorik Değişkenler Arası İlişkiler (Cramer's V)\n\n"
|
141 |
+
result += "\n".join(cat_correlations)
|
142 |
+
|
143 |
+
return result
|
144 |
+
|
145 |
+
def create_visualization(self, plot_type, x_col, y_col=None, color_col=None):
|
146 |
+
if self.df is None:
|
147 |
+
return None
|
148 |
+
|
149 |
+
plt.figure(figsize=(10, 6))
|
150 |
+
|
151 |
+
try:
|
152 |
+
if plot_type == 'histogram':
|
153 |
+
fig = px.histogram(self.df, x=x_col, color=color_col,
|
154 |
+
title=f'{x_col} Histogram')
|
155 |
+
|
156 |
+
elif plot_type == 'box':
|
157 |
+
fig = px.box(self.df, x=x_col, y=y_col, color=color_col,
|
158 |
+
title=f'{x_col} - {y_col} Box Plot')
|
159 |
+
|
160 |
+
elif plot_type == 'scatter':
|
161 |
+
fig = px.scatter(self.df, x=x_col, y=y_col, color=color_col,
|
162 |
+
title=f'{x_col} vs {y_col} Scatter Plot')
|
163 |
+
|
164 |
+
elif plot_type == 'bar':
|
165 |
+
fig = px.bar(self.df, x=x_col, y=y_col, color=color_col,
|
166 |
+
title=f'{x_col} - {y_col} Bar Plot')
|
167 |
+
|
168 |
+
elif plot_type == 'violin':
|
169 |
+
fig = px.violin(self.df, x=x_col, y=y_col, color=color_col,
|
170 |
+
title=f'{x_col} - {y_col} Violin Plot')
|
171 |
+
|
172 |
+
elif plot_type == 'line':
|
173 |
+
fig = px.line(self.df, x=x_col, y=y_col, color=color_col,
|
174 |
+
title=f'{x_col} - {y_col} Line Plot')
|
175 |
+
|
176 |
+
elif plot_type == 'heatmap':
|
177 |
+
corr = self.df[[x_col, y_col]].corr()
|
178 |
+
fig = px.imshow(corr, title='Correlation Heatmap')
|
179 |
+
|
180 |
+
return fig
|
181 |
+
|
182 |
+
except Exception as e:
|
183 |
+
return f"Görselleştirme oluşturulurken hata: {str(e)}"
|
184 |
+
|
185 |
+
def feature_importance(self, target_col):
|
186 |
+
if self.df is None:
|
187 |
+
return "Önce veri yükleyin!"
|
188 |
+
|
189 |
+
try:
|
190 |
+
# Sayısal değişkenler için VIF hesaplama
|
191 |
+
X = self.df[self.numeric_columns].drop(columns=[target_col], errors='ignore')
|
192 |
+
vif_data = pd.DataFrame()
|
193 |
+
vif_data["Feature"] = X.columns
|
194 |
+
vif_data["VIF"] = [variance_inflation_factor(X.values, i)
|
195 |
+
for i in range(X.shape[1])]
|
196 |
+
|
197 |
+
result = "### Özellik Önem Analizi\n\n"
|
198 |
+
result += "VIF (Variance Inflation Factor) Değerleri:\n"
|
199 |
+
result += vif_data.sort_values('VIF', ascending=False).to_string()
|
200 |
+
|
201 |
+
# Korelasyon bazlı özellik önemi
|
202 |
+
if target_col in self.df.columns:
|
203 |
+
correlations = self.df[self.numeric_columns].corrwith(self.df[target_col])
|
204 |
+
result += "\n\nHedef Değişken ile Korelasyonlar:\n"
|
205 |
+
result += correlations.sort_values(ascending=False).to_string()
|
206 |
+
|
207 |
+
return result
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
return f"Özellik önem analizi sırasında hata: {str(e)}"
|
211 |
+
|
212 |
+
def statistical_tests(self, column1, column2=None):
|
213 |
+
if self.df is None:
|
214 |
+
return "Önce veri yükleyin!"
|
215 |
+
|
216 |
+
results = []
|
217 |
+
results.append("### İstatistiksel Test Sonuçları\n")
|
218 |
+
|
219 |
+
try:
|
220 |
+
# Tek değişkenli testler
|
221 |
+
if column2 is None:
|
222 |
+
# Normallik testi
|
223 |
+
stat, p_value = stats.normaltest(self.df[column1].dropna())
|
224 |
+
results.append(f"Normallik Testi (D'Agostino and Pearson's):")
|
225 |
+
results.append(f"Stat: {stat:.4f}, p-value: {p_value:.4f}")
|
226 |
+
results.append(f"Sonuç: {'Normal dağılım' if p_value > 0.05 else 'Normal dağılım değil'}\n")
|
227 |
+
|
228 |
+
# Temel istatistikler
|
229 |
+
desc = self.df[column1].describe()
|
230 |
+
results.append("Temel İstatistikler:")
|
231 |
+
results.append(desc.to_string())
|
232 |
+
|
233 |
+
# İki değişkenli testler
|
234 |
+
else:
|
235 |
+
if column1 in self.numeric_columns and column2 in self.numeric_columns:
|
236 |
+
# Pearson korelasyon
|
237 |
+
corr, p_value = stats.pearsonr(self.df[column1].dropna(),
|
238 |
+
self.df[column2].dropna())
|
239 |
+
results.append(f"Pearson Korelasyon:")
|
240 |
+
results.append(f"Correlation: {corr:.4f}, p-value: {p_value:.4f}\n")
|
241 |
+
|
242 |
+
# T-test
|
243 |
+
t_stat, p_value = stats.ttest_ind(self.df[column1].dropna(),
|
244 |
+
self.df[column2].dropna())
|
245 |
+
results.append(f"Bağımsız T-test:")
|
246 |
+
results.append(f"T-stat: {t_stat:.4f}, p-value: {p_value:.4f}\n")
|
247 |
+
|
248 |
+
elif column1 in self.categorical_columns and column2 in self.categorical_columns:
|
249 |
+
# Chi-square test
|
250 |
+
contingency = pd.crosstab(self.df[column1], self.df[column2])
|
251 |
+
chi2, p_value, dof, expected = chi2_contingency(contingency)
|
252 |
+
results.append(f"Chi-square Bağımsızlık Testi:")
|
253 |
+
results.append(f"Chi2: {chi2:.4f}, p-value: {p_value:.4f}")
|
254 |
+
|
255 |
+
return "\n".join(results)
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
return f"İstatistiksel testler sırasında hata: {str(e)}"
|
259 |
+
|
260 |
+
|
261 |
+
def create_interface():
|
262 |
+
analyzer = DataAnalyzer()
|
263 |
+
|
264 |
+
with gr.Blocks() as demo:
|
265 |
+
gr.Markdown("# Gelişmiş Veri Analiz Aracı")
|
266 |
+
|
267 |
+
with gr.Tab("Veri Yükleme ve Temel Bilgiler"):
|
268 |
+
file_input = gr.File(label="CSV Dosyası Yükleyin")
|
269 |
+
load_button = gr.Button("Veri Yükle")
|
270 |
+
info_button = gr.Button("Temel Bilgileri Göster")
|
271 |
+
output_text = gr.Textbox(label="Sonuçlar", lines=20)
|
272 |
+
|
273 |
+
load_button.click(analyzer.load_data, inputs=[file_input], outputs=[output_text])
|
274 |
+
info_button.click(analyzer.get_basic_info, outputs=[output_text])
|
275 |
+
|
276 |
+
with gr.Tab("Eksik Değer Analizi"):
|
277 |
+
missing_button = gr.Button("Eksik Değerleri Analiz Et")
|
278 |
+
missing_output = gr.Textbox(label="Eksik Değer Analizi", lines=15)
|
279 |
+
|
280 |
+
missing_button.click(analyzer.analyze_missing_values, outputs=[missing_output])
|
281 |
+
|
282 |
+
with gr.Tab("Aykırı Değer Analizi"):
|
283 |
+
with gr.Row():
|
284 |
+
outlier_method = gr.Radio(["zscore", "iqr"], label="Analiz Metodu", value="zscore")
|
285 |
+
outlier_threshold = gr.Slider(minimum=1, maximum=5, value=3, label="Eşik Değeri")
|
286 |
+
outlier_button = gr.Button("Aykırı Değerleri Analiz Et")
|
287 |
+
outlier_output = gr.Textbox(label="Aykırı Değer Analizi", lines=15)
|
288 |
+
|
289 |
+
outlier_button.click(
|
290 |
+
analyzer.analyze_outliers,
|
291 |
+
inputs=[outlier_method, outlier_threshold],
|
292 |
+
outputs=[outlier_output]
|
293 |
+
)
|
294 |
+
|
295 |
+
with gr.Tab("Korelasyon Analizi"):
|
296 |
+
corr_button = gr.Button("Korelasyonları Analiz Et")
|
297 |
+
corr_output = gr.Textbox(label="Korelasyon Analizi", lines=15)
|
298 |
+
|
299 |
+
corr_button.click(analyzer.analyze_correlations, outputs=[corr_output])
|
300 |
+
|
301 |
+
with gr.Tab("Görselleştirme"):
|
302 |
+
with gr.Row():
|
303 |
+
plot_type = gr.Dropdown(
|
304 |
+
choices=[
|
305 |
+
"histogram", "box", "scatter", "bar",
|
306 |
+
"violin", "line", "heatmap"
|
307 |
+
],
|
308 |
+
label="Grafik Tipi",
|
309 |
+
value="histogram"
|
310 |
+
)
|
311 |
+
x_col = gr.Dropdown(label="X Ekseni")
|
312 |
+
y_col = gr.Dropdown(label="Y Ekseni")
|
313 |
+
color_col = gr.Dropdown(label="Renk Değişkeni (Opsiyonel)")
|
314 |
+
|
315 |
+
plot_button = gr.Button("Grafik Oluştur")
|
316 |
+
plot_output = gr.Plot(label="Görselleştirme")
|
317 |
+
|
318 |
+
def update_columns(file):
|
319 |
+
if file is not None:
|
320 |
+
df = pd.read_csv(file.name)
|
321 |
+
return gr.Dropdown(choices=df.columns.tolist()), \
|
322 |
+
gr.Dropdown(choices=df.columns.tolist()), \
|
323 |
+
gr.Dropdown(choices=['None'] + df.columns.tolist())
|
324 |
+
return gr.Dropdown(), gr.Dropdown(), gr.Dropdown()
|
325 |
+
|
326 |
+
file_input.change(
|
327 |
+
update_columns,
|
328 |
+
inputs=[file_input],
|
329 |
+
outputs=[x_col, y_col, color_col]
|
330 |
+
)
|
331 |
+
|
332 |
+
plot_button.click(
|
333 |
+
analyzer.create_visualization,
|
334 |
+
inputs=[plot_type, x_col, y_col, color_col],
|
335 |
+
outputs=[plot_output]
|
336 |
+
)
|
337 |
+
|
338 |
+
with gr.Tab("İstatistiksel Analizler"):
|
339 |
+
with gr.Row():
|
340 |
+
stat_col1 = gr.Dropdown(label="Birinci Değişken")
|
341 |
+
stat_col2 = gr.Dropdown(label="İkinci Değişken (Opsiyonel)")
|
342 |
+
|
343 |
+
stat_button = gr.Button("İstatistiksel Testleri Çalıştır")
|
344 |
+
stat_output = gr.Textbox(label="Test Sonuçları", lines=15)
|
345 |
+
|
346 |
+
file_input.change(
|
347 |
+
lambda file: (
|
348 |
+
gr.Dropdown(choices=pd.read_csv(file.name).columns.tolist()),
|
349 |
+
gr.Dropdown(choices=['None'] + pd.read_csv(file.name).columns.tolist())
|
350 |
+
) if file else (gr.Dropdown(), gr.Dropdown()),
|
351 |
+
inputs=[file_input],
|
352 |
+
outputs=[stat_col1, stat_col2]
|
353 |
+
)
|
354 |
+
|
355 |
+
stat_button.click(
|
356 |
+
analyzer.statistical_tests,
|
357 |
+
inputs=[stat_col1, stat_col2],
|
358 |
+
outputs=[stat_output]
|
359 |
+
)
|
360 |
+
|
361 |
+
with gr.Tab("Özellik Önem Analizi"):
|
362 |
+
target_col = gr.Dropdown(label="Hedef Değişken")
|
363 |
+
importance_button = gr.Button("Özellik Önemini Analiz Et")
|
364 |
+
importance_output = gr.Textbox(label="Özellik Önem Analizi", lines=15)
|
365 |
+
|
366 |
+
file_input.change(
|
367 |
+
lambda file: gr.Dropdown(
|
368 |
+
choices=pd.read_csv(file.name).columns.tolist()) if file else gr.Dropdown(),
|
369 |
+
inputs=[file_input],
|
370 |
+
outputs=[target_col]
|
371 |
+
)
|
372 |
+
|
373 |
+
importance_button.click(
|
374 |
+
analyzer.feature_importance,
|
375 |
+
inputs=[target_col],
|
376 |
+
outputs=[importance_output]
|
377 |
+
)
|
378 |
+
|
379 |
+
with gr.Tab("Veri Ön İşleme"):
|
380 |
+
with gr.Row():
|
381 |
+
preprocess_method = gr.Radio(
|
382 |
+
choices=["standardization", "minmax", "robust", "log"],
|
383 |
+
label="Ölçeklendirme Metodu",
|
384 |
+
value="standardization"
|
385 |
+
)
|
386 |
+
columns_to_process = gr.Dropdown(
|
387 |
+
label="İşlenecek Sütunlar",
|
388 |
+
multiselect=True
|
389 |
+
)
|
390 |
+
|
391 |
+
def preprocess_data(file, method, columns):
|
392 |
+
if file is None:
|
393 |
+
return "Önce veri yükleyin!"
|
394 |
+
|
395 |
+
try:
|
396 |
+
df = pd.read_csv(file.name)
|
397 |
+
processed_df = df.copy()
|
398 |
+
|
399 |
+
if method == "standardization":
|
400 |
+
scaler = StandardScaler()
|
401 |
+
elif method == "minmax":
|
402 |
+
scaler = MinMaxScaler()
|
403 |
+
elif method == "robust":
|
404 |
+
scaler = RobustScaler()
|
405 |
+
elif method == "log":
|
406 |
+
for col in columns:
|
407 |
+
processed_df[col] = np.log1p(df[col])
|
408 |
+
return processed_df
|
409 |
+
|
410 |
+
if method != "log":
|
411 |
+
processed_df[columns] = scaler.fit_transform(df[columns])
|
412 |
+
|
413 |
+
output_path = "preprocessed_data.csv"
|
414 |
+
processed_df.to_csv(output_path, index=False)
|
415 |
+
return output_path
|
416 |
+
|
417 |
+
except Exception as e:
|
418 |
+
return f"Ön işleme sırasında hata: {str(e)}"
|
419 |
+
|
420 |
+
preprocess_button = gr.Button("Ön İşleme Uygula")
|
421 |
+
preprocess_output = gr.File(label="İşlenmiş Veri")
|
422 |
+
|
423 |
+
file_input.change(
|
424 |
+
lambda file: gr.Dropdown(
|
425 |
+
choices=pd.read_csv(file.name).select_dtypes(include=[np.number]).columns.tolist(),
|
426 |
+
multiselect=True
|
427 |
+
) if file else gr.Dropdown(),
|
428 |
+
inputs=[file_input],
|
429 |
+
outputs=[columns_to_process]
|
430 |
+
)
|
431 |
+
|
432 |
+
preprocess_button.click(
|
433 |
+
preprocess_data,
|
434 |
+
inputs=[file_input, preprocess_method, columns_to_process],
|
435 |
+
outputs=[preprocess_output]
|
436 |
+
)
|
437 |
+
|
438 |
+
with gr.Tab("Rapor Oluşturma"):
|
439 |
+
report_button = gr.Button("Kapsamlı Rapor Oluştur")
|
440 |
+
|
441 |
+
def generate_report(file):
|
442 |
+
if file is None:
|
443 |
+
return "Önce veri yükleyin!"
|
444 |
+
|
445 |
+
try:
|
446 |
+
analyzer.load_data(file)
|
447 |
+
|
448 |
+
report = []
|
449 |
+
report.append("# Veri Analiz Raporu")
|
450 |
+
report.append(f"Oluşturma Tarihi: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
|
451 |
+
|
452 |
+
report.append("## 1. Temel Bilgiler")
|
453 |
+
report.append(analyzer.get_basic_info())
|
454 |
+
|
455 |
+
report.append("\n## 2. Eksik Değer Analizi")
|
456 |
+
report.append(analyzer.analyze_missing_values())
|
457 |
+
|
458 |
+
report.append("\n## 3. Aykırı Değer Analizi")
|
459 |
+
report.append(analyzer.analyze_outliers())
|
460 |
+
|
461 |
+
report.append("\n## 4. Korelasyon Analizi")
|
462 |
+
report.append(analyzer.analyze_correlations())
|
463 |
+
|
464 |
+
# Raporu kaydet
|
465 |
+
report_text = "\n".join(report)
|
466 |
+
with open("data_analysis_report.txt", "w", encoding="utf-8") as f:
|
467 |
+
f.write(report_text)
|
468 |
+
|
469 |
+
return "data_analysis_report.txt"
|
470 |
+
|
471 |
+
except Exception as e:
|
472 |
+
return f"Rapor oluşturma sırasında hata: {str(e)}"
|
473 |
+
|
474 |
+
report_output = gr.File(label="Oluşturulan Rapor")
|
475 |
+
|
476 |
+
report_button.click(
|
477 |
+
generate_report,
|
478 |
+
inputs=[file_input],
|
479 |
+
outputs=[report_output]
|
480 |
+
)
|
481 |
+
|
482 |
+
return demo
|
483 |
+
|
484 |
+
# Arayüzü oluştur ve başlat
|
485 |
+
if __name__ == "__main__":
|
486 |
+
demo = create_interface()
|
487 |
+
demo.launch()
|