thesven commited on
Commit
1733285
·
1 Parent(s): 04aa1b7

Added Files

Browse files

Added working files

Files changed (2) hide show
  1. ImageToStory.py +76 -0
  2. requirements.txt +5 -0
ImageToStory.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ import streamlit as st
4
+
5
+ from dotenv import find_dotenv, load_dotenv
6
+ from transformers import pipeline
7
+
8
+ from langchain import PromptTemplate, LLMChain
9
+ from langchain.llms import GooglePalm
10
+
11
+ load_dotenv(find_dotenv())
12
+
13
+ llm = GooglePalm(temperature=0.9, google_api_key=os.getenv("GOOGLE_API_KEY"))
14
+
15
+ # Iamge to Text
16
+ def image_to_text(url):
17
+ #load a transformer
18
+ image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
19
+
20
+ text = image_to_text(url)[0]['generated_text']
21
+
22
+ print (text)
23
+ return text
24
+
25
+ # llm
26
+ def generate_story(scenario):
27
+ template = """
28
+ you are a very good story teller and a very rude person:
29
+ you can generate a short fairy tail based on a single narrative, the story should take 5 seconds to read.
30
+
31
+ CONTEXT: {scenario}
32
+ STORY:
33
+ """
34
+
35
+ prompt = PromptTemplate(template=template, input_variables=["scenario"])
36
+ story_llm = LLMChain(llm=llm, prompt=prompt, verbose=True)
37
+ story = story_llm.predict(scenario=scenario)
38
+ print(story)
39
+ return story
40
+
41
+ # text to speech
42
+
43
+ def text_to_speech(message):
44
+ API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
45
+ headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"}
46
+ payload = {"inputs": message}
47
+
48
+ response = requests.post(API_URL, headers=headers, json=payload)
49
+ print(response.content)
50
+ with open('audio.mp3', 'wb') as audio_file:
51
+ audio_file.write(response.content)
52
+
53
+ def main():
54
+ st.set_page_config(page_title="Image to Story", page_icon="📚", layout="wide")
55
+
56
+ st.title("Image to Story")
57
+ uploaded_file = st.file_uploader("Choose an image...", type="png")
58
+
59
+ if uploaded_file is not None:
60
+ bytes_data = uploaded_file.getvalue()
61
+ with open(uploaded_file.name, "wb") as file:
62
+ file.write(bytes_data)
63
+ st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
64
+ scenario = image_to_text(uploaded_file.name)
65
+ story = generate_story(scenario)
66
+ text_to_speech(story)
67
+
68
+ with st.expander("scenerio"):
69
+ st.write(scenario)
70
+ with st.expander("story"):
71
+ st.write(story)
72
+
73
+ st.audio("audio.mp3")
74
+
75
+ if __name__ == '__main__':
76
+ main()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ google-generativeai
2
+ langchain
3
+ python-dotenv
4
+ tensorflow
5
+ transformers