Spaces:
Running
Running
Added Files
Browse filesAdded working files
- ImageToStory.py +76 -0
- requirements.txt +5 -0
ImageToStory.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
from dotenv import find_dotenv, load_dotenv
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
from langchain import PromptTemplate, LLMChain
|
9 |
+
from langchain.llms import GooglePalm
|
10 |
+
|
11 |
+
load_dotenv(find_dotenv())
|
12 |
+
|
13 |
+
llm = GooglePalm(temperature=0.9, google_api_key=os.getenv("GOOGLE_API_KEY"))
|
14 |
+
|
15 |
+
# Iamge to Text
|
16 |
+
def image_to_text(url):
|
17 |
+
#load a transformer
|
18 |
+
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
19 |
+
|
20 |
+
text = image_to_text(url)[0]['generated_text']
|
21 |
+
|
22 |
+
print (text)
|
23 |
+
return text
|
24 |
+
|
25 |
+
# llm
|
26 |
+
def generate_story(scenario):
|
27 |
+
template = """
|
28 |
+
you are a very good story teller and a very rude person:
|
29 |
+
you can generate a short fairy tail based on a single narrative, the story should take 5 seconds to read.
|
30 |
+
|
31 |
+
CONTEXT: {scenario}
|
32 |
+
STORY:
|
33 |
+
"""
|
34 |
+
|
35 |
+
prompt = PromptTemplate(template=template, input_variables=["scenario"])
|
36 |
+
story_llm = LLMChain(llm=llm, prompt=prompt, verbose=True)
|
37 |
+
story = story_llm.predict(scenario=scenario)
|
38 |
+
print(story)
|
39 |
+
return story
|
40 |
+
|
41 |
+
# text to speech
|
42 |
+
|
43 |
+
def text_to_speech(message):
|
44 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
45 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"}
|
46 |
+
payload = {"inputs": message}
|
47 |
+
|
48 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
49 |
+
print(response.content)
|
50 |
+
with open('audio.mp3', 'wb') as audio_file:
|
51 |
+
audio_file.write(response.content)
|
52 |
+
|
53 |
+
def main():
|
54 |
+
st.set_page_config(page_title="Image to Story", page_icon="📚", layout="wide")
|
55 |
+
|
56 |
+
st.title("Image to Story")
|
57 |
+
uploaded_file = st.file_uploader("Choose an image...", type="png")
|
58 |
+
|
59 |
+
if uploaded_file is not None:
|
60 |
+
bytes_data = uploaded_file.getvalue()
|
61 |
+
with open(uploaded_file.name, "wb") as file:
|
62 |
+
file.write(bytes_data)
|
63 |
+
st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
|
64 |
+
scenario = image_to_text(uploaded_file.name)
|
65 |
+
story = generate_story(scenario)
|
66 |
+
text_to_speech(story)
|
67 |
+
|
68 |
+
with st.expander("scenerio"):
|
69 |
+
st.write(scenario)
|
70 |
+
with st.expander("story"):
|
71 |
+
st.write(story)
|
72 |
+
|
73 |
+
st.audio("audio.mp3")
|
74 |
+
|
75 |
+
if __name__ == '__main__':
|
76 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
google-generativeai
|
2 |
+
langchain
|
3 |
+
python-dotenv
|
4 |
+
tensorflow
|
5 |
+
transformers
|