Thiago Hersan
commited on
Commit
·
f254011
1
Parent(s):
4fba7a2
maskformer-swin-tiny-ade
Browse files
app.py
CHANGED
@@ -1,7 +1,40 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import numpy as np
|
5 |
+
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation
|
6 |
|
|
|
|
|
7 |
|
8 |
+
preprocessor = MaskFormerFeatureExtractor.from_pretrained("facebook/maskformer-swin-tiny-ade")
|
9 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-tiny-ade")
|
10 |
+
|
11 |
+
def visualize_instance_seg_mask(mask):
|
12 |
+
image = np.zeros((mask.shape[0], mask.shape[1], 3))
|
13 |
+
labels = np.unique(mask)
|
14 |
+
label2color = {label: (random.randint(0, 1), random.randint(0, 255), random.randint(0, 255)) for label in labels}
|
15 |
+
for i in range(image.shape[0]):
|
16 |
+
for j in range(image.shape[1]):
|
17 |
+
image[i, j, :] = label2color[mask[i, j]]
|
18 |
+
image = image / 255
|
19 |
+
return image
|
20 |
+
|
21 |
+
def query_image(img):
|
22 |
+
target_size = (img.shape[0], img.shape[1])
|
23 |
+
inputs = preprocessor(images=img, return_tensors="pt")
|
24 |
+
outputs = model(**inputs)
|
25 |
+
results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0]
|
26 |
+
results = torch.argmax(results, dim=0).numpy()
|
27 |
+
results = visualize_instance_seg_mask(results)
|
28 |
+
return results
|
29 |
+
|
30 |
+
|
31 |
+
demo = gr.Interface(
|
32 |
+
query_image,
|
33 |
+
inputs=[gr.Image()],
|
34 |
+
outputs="image",
|
35 |
+
title="maskformer-swin-tiny-ade results",
|
36 |
+
allow_flagging="never",
|
37 |
+
analytics_enabled=None
|
38 |
+
)
|
39 |
+
|
40 |
+
demo.launch(show_api=False)
|