Thiago Hersan
adds app and dockerfile files
988ebda
raw
history blame
3.19 kB
import glob
import gradio as gr
import numpy as np
from os import environ
from PIL import Image
from torchvision import transforms as T
from transformers import MaskFormerForInstanceSegmentation, MaskFormerImageProcessor
example_images = sorted(glob.glob('examples/map*.jpg'))
ade_mean=[0.485, 0.456, 0.406]
ade_std=[0.229, 0.224, 0.225]
test_transform = T.Compose([
T.ToTensor(),
T.Normalize(mean=ade_mean, std=ade_std)
])
palette = [
[120, 120, 120], [4, 200, 4], [4, 4, 250], [6, 230, 230],
[80, 50, 50], [120, 120, 80], [140, 140, 140], [204, 5, 255]
]
model_id = f"thiagohersan/maskformer-satellite-trees"
vegetation_labels = ["vegetation"]
# preprocessor = MaskFormerImageProcessor.from_pretrained(model_id)
preprocessor = MaskFormerImageProcessor(
do_resize=False,
do_normalize=False,
do_rescale=False,
ignore_index=255,
reduce_labels=False
)
hf_token = environ.get('HFTOKEN')
model = MaskFormerForInstanceSegmentation.from_pretrained(model_id, use_auth_token=hf_token)
def visualize_instance_seg_mask(img_in, mask, id2label, included_labels):
img_out = np.zeros((mask.shape[0], mask.shape[1], 3))
image_total_pixels = mask.shape[0] * mask.shape[1]
label_ids = np.unique(mask)
id2color = {id: palette[id] for id in label_ids}
id2count = {id: 0 for id in label_ids}
for i in range(img_out.shape[0]):
for j in range(img_out.shape[1]):
img_out[i, j, :] = id2color[mask[i, j]]
id2count[mask[i, j]] = id2count[mask[i, j]] + 1
image_res = (0.5 * img_in + 0.5 * img_out).astype(np.uint8)
dataframe = [[
f"{id2label[id]}",
f"{(100 * id2count[id] / image_total_pixels):.2f} %",
f"{np.sqrt(id2count[id] / image_total_pixels):.2f} m"
] for id in label_ids if id2label[id] in included_labels]
if len(dataframe) < 1:
dataframe = [[
f"",
f"{(0):.2f} %",
f"{(0):.2f} m"
]]
return image_res, dataframe
def query_image(image_path):
img = np.array(Image.open(image_path))
img_size = (img.shape[0], img.shape[1])
inputs = preprocessor(images=test_transform(img), return_tensors="pt")
outputs = model(**inputs)
results = preprocessor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[img_size])[0]
mask_img, dataframe = visualize_instance_seg_mask(img, results.numpy(), model.config.id2label, vegetation_labels)
return mask_img, dataframe
demo = gr.Interface(
title="Maskformer Satellite+Trees",
description="Using a finetuned version of the [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade) model (created specifically to work with satellite images) to calculate percentage of pixels in an image that belong to vegetation.",
fn=query_image,
inputs=[gr.Image(type="filepath", label="Input Image")],
outputs=[
gr.Image(label="Vegetation"),
gr.DataFrame(label="Info", headers=["Object Label", "Pixel Percent", "Square Length"])
],
examples=example_images,
cache_examples=True,
allow_flagging="never",
analytics_enabled=None
)
demo.launch(show_api=False)