Spaces:
Running
Running
File size: 6,490 Bytes
42d27cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# https://github.com/fatheral/matlab_imresize
#
# MIT License
#
# Copyright (c) 2020 Alex
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import print_function
import numpy as np
from math import ceil, floor
def deriveSizeFromScale(img_shape, scale):
output_shape = []
for k in range(2):
output_shape.append(int(ceil(scale[k] * img_shape[k])))
return output_shape
def deriveScaleFromSize(img_shape_in, img_shape_out):
scale = []
for k in range(2):
scale.append(1.0 * img_shape_out[k] / img_shape_in[k])
return scale
def triangle(x):
x = np.array(x).astype(np.float64)
lessthanzero = np.logical_and((x >= -1), x < 0)
greaterthanzero = np.logical_and((x <= 1), x >= 0)
f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero)
return f
def cubic(x):
x = np.array(x).astype(np.float64)
absx = np.absolute(x)
absx2 = np.multiply(absx, absx)
absx3 = np.multiply(absx2, absx)
f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply(-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2,
(1 < absx) & (absx <= 2))
return f
def contributions(in_length, out_length, scale, kernel, k_width):
if scale < 1:
h = lambda x: scale * kernel(scale * x)
kernel_width = 1.0 * k_width / scale
else:
h = kernel
kernel_width = k_width
x = np.arange(1, out_length + 1).astype(np.float64)
u = x / scale + 0.5 * (1 - 1 / scale)
left = np.floor(u - kernel_width / 2)
P = int(ceil(kernel_width)) + 2
ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0
indices = ind.astype(np.int32)
weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0
weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1))
aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32)
indices = aux[np.mod(indices, aux.size)]
ind2store = np.nonzero(np.any(weights, axis=0))
weights = weights[:, ind2store]
indices = indices[:, ind2store]
return weights, indices
def imresizemex(inimg, weights, indices, dim):
in_shape = inimg.shape
w_shape = weights.shape
out_shape = list(in_shape)
out_shape[dim] = w_shape[0]
outimg = np.zeros(out_shape)
if dim == 0:
for i_img in range(in_shape[1]):
for i_w in range(w_shape[0]):
w = weights[i_w, :]
ind = indices[i_w, :]
im_slice = inimg[ind, i_img].astype(np.float64)
outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
elif dim == 1:
for i_img in range(in_shape[0]):
for i_w in range(w_shape[0]):
w = weights[i_w, :]
ind = indices[i_w, :]
im_slice = inimg[i_img, ind].astype(np.float64)
outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
if inimg.dtype == np.uint8:
outimg = np.clip(outimg, 0, 255)
return np.around(outimg).astype(np.uint8)
else:
return outimg
def imresizevec(inimg, weights, indices, dim):
wshape = weights.shape
if dim == 0:
weights = weights.reshape((wshape[0], wshape[2], 1, 1))
outimg = np.sum(weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1)
elif dim == 1:
weights = weights.reshape((1, wshape[0], wshape[2], 1))
outimg = np.sum(weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2)
if inimg.dtype == np.uint8:
outimg = np.clip(outimg, 0, 255)
return np.around(outimg).astype(np.uint8)
else:
return outimg
def resizeAlongDim(A, dim, weights, indices, mode="vec"):
if mode == "org":
out = imresizemex(A, weights, indices, dim)
else:
out = imresizevec(A, weights, indices, dim)
return out
def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"):
if method is 'bicubic':
kernel = cubic
elif method is 'bilinear':
kernel = triangle
else:
print('Error: Unidentified method supplied')
kernel_width = 4.0
# Fill scale and output_size
if scalar_scale is not None:
scalar_scale = float(scalar_scale)
scale = [scalar_scale, scalar_scale]
output_size = deriveSizeFromScale(I.shape, scale)
elif output_shape is not None:
scale = deriveScaleFromSize(I.shape, output_shape)
output_size = list(output_shape)
else:
print('Error: scalar_scale OR output_shape should be defined!')
return
scale_np = np.array(scale)
order = np.argsort(scale_np)
weights = []
indices = []
for k in range(2):
w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width)
weights.append(w)
indices.append(ind)
B = np.copy(I)
flag2D = False
if B.ndim == 2:
B = np.expand_dims(B, axis=2)
flag2D = True
for k in range(2):
dim = order[k]
B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode)
if flag2D:
B = np.squeeze(B, axis=2)
return B
def convertDouble2Byte(I):
B = np.clip(I, 0.0, 1.0)
B = 255 * B
return np.around(B).astype(np.uint8) |