File size: 5,976 Bytes
42d27cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) 2020 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE


import glob 
import sys
from collections import OrderedDict

from natsort import natsort

import options.options as option
from Measure import Measure, psnr
from imresize import imresize
from models import create_model
import torch
from utils.util import opt_get
import numpy as np
import pandas as pd
import os
import cv2


def fiFindByWildcard(wildcard):
    return natsort.natsorted(glob.glob(wildcard, recursive=True))


def load_model(conf_path):
    opt = option.parse(conf_path, is_train=False)
    opt['gpu_ids'] = None
    opt = option.dict_to_nonedict(opt)
    model = create_model(opt)

    model_path = opt_get(opt, ['model_path'], None)
    model.load_network(load_path=model_path, network=model.netG)
    return model, opt


def predict(model, lr):
    model.feed_data({"LQ": t(lr)}, need_GT=False)
    model.test()
    visuals = model.get_current_visuals(need_GT=False)
    return visuals.get('rlt', visuals.get("SR"))


def t(array): return torch.Tensor(np.expand_dims(array.transpose([2, 0, 1]), axis=0).astype(np.float32)) / 255


def rgb(t): return (
        np.clip((t[0] if len(t.shape) == 4 else t).detach().cpu().numpy().transpose([1, 2, 0]), 0, 1) * 255).astype(
    np.uint8)


def imread(path):
    return cv2.imread(path)[:, :, [2, 1, 0]]


def imwrite(path, img):
    os.makedirs(os.path.dirname(path), exist_ok=True)
    cv2.imwrite(path, img[:, :, [2, 1, 0]])


def imCropCenter(img, size):
    h, w, c = img.shape

    h_start = max(h // 2 - size // 2, 0)
    h_end = min(h_start + size, h)

    w_start = max(w // 2 - size // 2, 0)
    w_end = min(w_start + size, w)

    return img[h_start:h_end, w_start:w_end]


def impad(img, top=0, bottom=0, left=0, right=0, color=255):
    return np.pad(img, [(top, bottom), (left, right), (0, 0)], 'reflect')


def main():
    conf_path = sys.argv[1]
    conf = conf_path.split('/')[-1].replace('.yml', '')
    model, opt = load_model(conf_path)

    data_dir = opt['dataroot']

    # this_dir = os.path.dirname(os.path.realpath(__file__))
    test_dir = os.path.join('/kaggle/working/', 'results', conf)
    print(f"Out dir: {test_dir}")

    measure = Measure(use_gpu=False)

    fname = f'measure_full.csv'
    fname_tmp = fname + "_"
    path_out_measures = os.path.join(test_dir, fname_tmp)
    path_out_measures_final = os.path.join(test_dir, fname)

    if os.path.isfile(path_out_measures_final):
        df = pd.read_csv(path_out_measures_final)
    elif os.path.isfile(path_out_measures):
        df = pd.read_csv(path_out_measures)
    else:
        df = None

    scale = opt['scale']

    pad_factor = 2

    data_sets = [
        'Set5',
        'Set14',
        'Urban100',
        'BSD100'
        ]
    
    final_df = pd.DataFrame()

    for data_set in data_sets:
        lr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*LR.png'))
        hr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*HR.png'))
        
        df = pd.DataFrame(columns=['conf', 'heat', 'data_set', 'name', 'PSNR', 'SSIM', 'LPIPS', 'LRC PSNR'])

        for lr_path, hr_path, idx_test in zip(lr_paths, hr_paths, range(len(lr_paths))):
            with torch.no_grad(), torch.cuda.amp.autocast():
                lr = imread(lr_path)
                hr = imread(hr_path)

                # Pad image to be % 2
                h, w, c = lr.shape
                lq_orig = lr.copy()
                lr = impad(lr, bottom=int(np.ceil(h / pad_factor) * pad_factor - h),
                        right=int(np.ceil(w / pad_factor) * pad_factor - w))

                lr_t = t(lr)

                heat = opt['heat']

                if df is not None and len(df[(df['heat'] == heat) & (df['name'] == idx_test)]) == 1:
                    continue

                sr_t = model.get_sr(lq=lr_t, heat=heat)

                sr = rgb(torch.clamp(sr_t, 0, 1))
                sr = sr[:h * scale, :w * scale]

                path_out_sr = os.path.join(test_dir, data_set, "{:0.2f}".format(heat).replace('.', ''), "{:06d}.png".format(idx_test))
                imwrite(path_out_sr, sr)

                meas = OrderedDict(conf=conf, heat=heat, data_set=data_set, name=idx_test)
                meas['PSNR'], meas['SSIM'], meas['LPIPS'] = measure.measure(sr, hr)

                lr_reconstruct_rgb = imresize(sr, 1 / opt['scale'])
                meas['LRC PSNR'] = psnr(lq_orig, lr_reconstruct_rgb)

                str_out = format_measurements(meas)
                print(str_out)

                df = df._append(pd.DataFrame([meas]), ignore_index=True)
            
        final_df = pd.concat([final_df, df])

    final_df.to_csv(path_out_measures, index=False)
    os.rename(path_out_measures, path_out_measures_final)

    # str_out = format_measurements(df.mean())
    # print(f"Results in: {path_out_measures_final}")
    # print('Mean: ' + str_out)


def format_measurements(meas):
    s_out = []
    for k, v in meas.items():
        v = f"{v:0.2f}" if isinstance(v, float) else v
        s_out.append(f"{k}: {v}")
    str_out = ", ".join(s_out)
    return str_out


if __name__ == "__main__":
    main()