File size: 4,231 Bytes
b16ab70
 
 
 
 
 
4381d4f
 
b16ab70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4381d4f
b16ab70
4381d4f
 
b16ab70
 
 
 
 
 
 
 
 
 
 
 
 
4381d4f
b16ab70
 
 
4381d4f
 
 
 
b16ab70
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import time
import streamlit as st
import numpy as np
from PIL import Image
from io import BytesIO
from models.HAT.hat import *
from models.RCAN.rcan import *

# Initialize session state for enhanced images
if 'hat_enhanced_image' not in st.session_state:
    st.session_state['hat_enhanced_image'] = None

if 'rcan_enhanced_image' not in st.session_state:
    st.session_state['rcan_enhanced_image'] = None

if 'hat_clicked' not in st.session_state:
    st.session_state['hat_clicked'] = False
if 'rcan_clicked' not in st.session_state:
    st.session_state['rcan_clicked'] = False
    
st.markdown("<h1 style='text-align: center'>Image Super Resolution</h1>", unsafe_allow_html=True)
# Sidebar for navigation
st.sidebar.title("Options")
app_mode = st.sidebar.selectbox("Choose the input source",
                                ["Upload image", "Take a photo"])
# Depending on the choice, show the uploader widget or webcam capture
if app_mode == "Upload image":
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"], on_change=lambda: reset_states())
    if uploaded_file is not None:
        image = Image.open(uploaded_file).convert("RGB")
elif app_mode == "Take a photo":
    # Using JS code to access user's webcam
    camera_input = st.camera_input("Take a picture", on_change=lambda: reset_states())
    if camera_input is not None:
        # Convert the camera image to an RGB image
        image = Image.open(camera_input).convert("RGB")
        
def reset_states():
    st.session_state['hat_enhanced_image'] = None
    st.session_state['rcan_enhanced_image'] = None
    st.session_state['hat_clicked'] = False
    st.session_state['rcan_clicked'] = False
    
def get_image_download_link(img, filename):
    """Generates a link allowing the PIL image to be downloaded"""
    # Convert the PIL image to Bytes
    buffered = BytesIO()
    img.save(buffered, format="PNG")
    return st.download_button(
        label="Download Image",
        data=buffered.getvalue(),
        file_name=filename,
        mime="image/png"
    )
    
if 'image' in locals():
    # st.image(image, caption='Uploaded Image', use_column_width=True)
    st.write("")

    # ------------------------ HAT ------------------------ #
    if st.button('Enhance with HAT'):
        with st.spinner('Processing using HAT...'):                             
            with st.spinner('Wait for it... the model is processing the image'):                                                  
                enhanced_image = HAT_for_deployment(image)
                st.session_state['hat_enhanced_image'] = enhanced_image
            st.session_state['hat_clicked'] = True
            st.success('Done!')
    if st.session_state['hat_enhanced_image'] is not None:
        col1, col2 = st.columns(2)
        col1.header("Original")
        col1.image(image, use_column_width=True)
        col2.header("Enhanced")
        col2.image(st.session_state['hat_enhanced_image'], use_column_width=True)
        with col2:
            get_image_download_link(st.session_state['hat_enhanced_image'], 'hat_enhanced.jpg')
    
    # ------------------------ RCAN ------------------------ #
    if st.button('Enhance with RCAN'):
        with st.spinner('Processing using RCAN...'):
            with st.spinner('Wait for it... the model is processing the image'):
                rcan_model = RCAN()
                device = torch.device('cpu') if not torch.cuda.is_available() else torch.device('cuda')
                rcan_model.load_state_dict(torch.load('models/RCAN/rcan_checkpoint.pth', map_location=device))
                enhanced_image = rcan_model.inference(image)
                st.session_state['rcan_enhanced_image'] = enhanced_image
            st.session_state['rcan_clicked'] = True 
            st.success('Done!')
    if st.session_state['rcan_enhanced_image'] is not None:
        col1, col2 = st.columns(2)
        col1.header("Original")
        col1.image(image, use_column_width=True)
        col2.header("Enhanced")
        col2.image(st.session_state['rcan_enhanced_image'], use_column_width=True)
        with col2:
            get_image_download_link(st.session_state['rcan_enhanced_image'], 'rcan_enhanced.jpg')