File size: 5,681 Bytes
b16ab70
 
 
 
 
 
4381d4f
eee6b71
4381d4f
b16ab70
 
 
 
 
 
 
eee6b71
 
 
b16ab70
 
 
 
eee6b71
 
 
 
b16ab70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee6b71
b16ab70
 
eee6b71
b16ab70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4381d4f
b16ab70
4381d4f
 
b16ab70
 
 
 
 
 
 
 
 
 
 
 
 
4381d4f
b16ab70
 
 
4381d4f
 
 
 
b16ab70
 
 
 
 
 
 
 
 
 
 
eee6b71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import time
import streamlit as st
import numpy as np
from PIL import Image
from io import BytesIO
from models.HAT.hat import *
from models.RCAN.rcan import *
from models.SRGAN.srgan import *    

# Initialize session state for enhanced images
if 'hat_enhanced_image' not in st.session_state:
    st.session_state['hat_enhanced_image'] = None

if 'rcan_enhanced_image' not in st.session_state:
    st.session_state['rcan_enhanced_image'] = None

if 'srgan_enhanced_image' not in st.session_state:
    st.session_state['srgan_enhanced_image'] = None

if 'hat_clicked' not in st.session_state:
    st.session_state['hat_clicked'] = False
if 'rcan_clicked' not in st.session_state:
    st.session_state['rcan_clicked'] = False

if 'srgan_clicked' not in st.session_state:
    st.session_state['srgan_clicked'] = False 

st.markdown("<h1 style='text-align: center'>Image Super Resolution</h1>", unsafe_allow_html=True)
# Sidebar for navigation
st.sidebar.title("Options")
app_mode = st.sidebar.selectbox("Choose the input source",
                                ["Upload image", "Take a photo"])
# Depending on the choice, show the uploader widget or webcam capture
if app_mode == "Upload image":
    uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"], on_change=lambda: reset_states())
    if uploaded_file is not None:
        image = Image.open(uploaded_file).convert("RGB")
elif app_mode == "Take a photo":
    # Using JS code to access user's webcam
    camera_input = st.camera_input("Take a picture", on_change=lambda: reset_states())
    if camera_input is not None:
        # Convert the camera image to an RGB image
        image = Image.open(camera_input).convert("RGB")
        
def reset_states():
    st.session_state['hat_enhanced_image'] = None
    st.session_state['rcan_enhanced_image'] = None
    st.session_state['srgan_enhanced_image'] = None
    st.session_state['hat_clicked'] = False
    st.session_state['rcan_clicked'] = False
    st.session_state['srgan_clicked'] = False
    
def get_image_download_link(img, filename):
    """Generates a link allowing the PIL image to be downloaded"""
    # Convert the PIL image to Bytes
    buffered = BytesIO()
    img.save(buffered, format="PNG")
    return st.download_button(
        label="Download Image",
        data=buffered.getvalue(),
        file_name=filename,
        mime="image/png"
    )
    
if 'image' in locals():
    # st.image(image, caption='Uploaded Image', use_column_width=True)
    st.write("")

    # ------------------------ HAT ------------------------ #
    if st.button('Enhance with HAT'):
        with st.spinner('Processing using HAT...'):                             
            with st.spinner('Wait for it... the model is processing the image'):                                                  
                enhanced_image = HAT_for_deployment(image)
                st.session_state['hat_enhanced_image'] = enhanced_image
            st.session_state['hat_clicked'] = True
            st.success('Done!')
    if st.session_state['hat_enhanced_image'] is not None:
        col1, col2 = st.columns(2)
        col1.header("Original")
        col1.image(image, use_column_width=True)
        col2.header("Enhanced")
        col2.image(st.session_state['hat_enhanced_image'], use_column_width=True)
        with col2:
            get_image_download_link(st.session_state['hat_enhanced_image'], 'hat_enhanced.jpg')
    
    # ------------------------ RCAN ------------------------ #
    if st.button('Enhance with RCAN'):
        with st.spinner('Processing using RCAN...'):
            with st.spinner('Wait for it... the model is processing the image'):
                rcan_model = RCAN()
                device = torch.device('cpu') if not torch.cuda.is_available() else torch.device('cuda')
                rcan_model.load_state_dict(torch.load('models/RCAN/rcan_checkpoint.pth', map_location=device))
                enhanced_image = rcan_model.inference(image)
                st.session_state['rcan_enhanced_image'] = enhanced_image
            st.session_state['rcan_clicked'] = True 
            st.success('Done!')
    if st.session_state['rcan_enhanced_image'] is not None:
        col1, col2 = st.columns(2)
        col1.header("Original")
        col1.image(image, use_column_width=True)
        col2.header("Enhanced")
        col2.image(st.session_state['rcan_enhanced_image'], use_column_width=True)
        with col2:
            get_image_download_link(st.session_state['rcan_enhanced_image'], 'rcan_enhanced.jpg')
    #--------------------------SRGAN--------------------------#
    if st.button('Enhance with SRGAN'):
        with st.spinner('Processing using SRGAN...'):
            with st.spinner('Wait for it... the model is processing the image'):
                srgan_model = GeneratorResnet()
                device = torch.device('cpu') if not torch.cuda.is_available() else torch.device('cuda')
                srgan_model = torch.load('models/SRGAN/srgan_checkpoint.pth', map_location=device)
                enhanced_image = srgan_model.inference(image)
                st.session_state['srgan_enhanced_image'] = enhanced_image
            st.session_state['srgan_clicked'] = True 
            st.success('Done!')
    if st.session_state['srgan_enhanced_image'] is not None:
        col1, col2 = st.columns(2)
        col1.header("Original")
        col1.image(image, use_column_width=True)
        col2.header("Enhanced")
        col2.image(st.session_state['srgan_enhanced_image'], use_column_width=True)
        with col2:
            get_image_download_link(st.session_state['srgan_enhanced_image'], 'srgan_enhanced.jpg')