Spaces:
Running
Running
File size: 14,391 Bytes
42d27cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# Copyright (c) 2020 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
import os
from os.path import basename
import math
import argparse
import random
import logging
import cv2
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import options.options as option
from utils import util
from data import create_dataloader, create_dataset
from models import create_model
from utils.timer import Timer, TickTock
from utils.util import get_resume_paths
import wandb
def getEnv(name): import os; return True if name in os.environ.keys() else False
def init_dist(backend='nccl', **kwargs):
''' initialization for distributed training'''
# if mp.get_start_method(allow_none=True) is None:
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_deviceDistIterSampler(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
def main():
wandb.init(project='srflow')
#### options
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YMAL file.')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
#### distributed training settings
opt['dist'] = False
rank = -1
print('Disabled distributed training.')
#### loading resume state if exists
if opt['path'].get('resume_state', None):
resume_state_path, _ = get_resume_paths(opt)
# distributed resuming: all load into default GPU
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path,
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# tensorboard logger
if opt.get('use_tb_logger', False) and 'debug' not in opt['name']:
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
conf_name = basename(args.opt).replace(".yml", "")
exp_dir = opt['path']['experiments_root']
log_dir_train = os.path.join(exp_dir, 'tb', conf_name, 'train')
log_dir_valid = os.path.join(exp_dir, 'tb', conf_name, 'valid')
tb_logger_train = SummaryWriter(log_dir=log_dir_train)
tb_logger_valid = SummaryWriter(log_dir=log_dir_valid)
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if rank <= 0:
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
#### create train and val dataloader
dataset_ratio = 200 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
full_dataset = create_dataset(dataset_opt)
print('Dataset created')
train_len = int(len(full_dataset) * 0.95)
val_len = len(full_dataset) - train_len
train_set, val_set = torch.utils.data.random_split(full_dataset, [train_len, val_len])
train_size = int(math.ceil(train_len / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
train_sampler = None
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
if rank <= 0:
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(train_set), train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
total_epochs, total_iters))
val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=1,
pin_memory=True)
elif phase == 'val':
continue
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert train_loader is not None
#### create model
current_step = 0 if resume_state is None else resume_state['iter']
model = create_model(opt, current_step)
#### resume training
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state) # handle optimizers and schedulers
else:
current_step = 0
start_epoch = 0
#### training
timer = Timer()
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
timerData = TickTock()
for epoch in range(start_epoch, total_epochs + 1):
if opt['dist']:
train_sampler.set_epoch(epoch)
timerData.tick()
for _, train_data in enumerate(train_loader):
timerData.tock()
current_step += 1
if current_step > total_iters:
break
#### training
model.feed_data(train_data)
#### update learning rate
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
try:
nll = model.optimize_parameters(current_step)
except RuntimeError as e:
print("Skipping ERROR caught in nll = model.optimize_parameters(current_step): ")
print(e)
if nll is None:
nll = 0
wandb.log({"loss": nll})
#### log
def eta(t_iter):
return (t_iter * (opt['train']['niter'] - current_step)) / 3600
if current_step % opt['logger']['print_freq'] == 0 \
or current_step - (resume_state['iter'] if resume_state else 0) < 25:
avg_time = timer.get_average_and_reset()
avg_data_time = timerData.get_average_and_reset()
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}, t:{:.2e}, td:{:.2e}, eta:{:.2e}, nll:{:.3e}> '.format(
epoch, current_step, model.get_current_learning_rate(), avg_time, avg_data_time,
eta(avg_time), nll)
print(message)
timer.tick()
# Reduce number of logs
if current_step % 5 == 0:
tb_logger_train.add_scalar('loss/nll', nll, current_step)
tb_logger_train.add_scalar('lr/base', model.get_current_learning_rate(), current_step)
tb_logger_train.add_scalar('time/iteration', timer.get_last_iteration(), current_step)
tb_logger_train.add_scalar('time/data', timerData.get_last_iteration(), current_step)
tb_logger_train.add_scalar('time/eta', eta(timer.get_last_iteration()), current_step)
for k, v in model.get_current_log().items():
tb_logger_train.add_scalar(k, v, current_step)
# validation
if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
avg_psnr = 0.0
idx = 0
nlls = []
for val_data in val_loader:
idx += 1
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
model.feed_data(val_data)
nll = model.test()
if nll is None:
nll = 0
nlls.append(nll)
visuals = model.get_current_visuals()
sr_img = None
# Save SR images for reference
if hasattr(model, 'heats'):
for heat in model.heats:
for i in range(model.n_sample):
sr_img = util.tensor2img(visuals['SR', heat, i]) # uint8
save_img_path = os.path.join(img_dir,
'{:s}_{:09d}_h{:03d}_s{:d}.png'.format(img_name,
current_step,
int(heat * 100), i))
util.save_img(sr_img, save_img_path)
else:
sr_img = util.tensor2img(visuals['SR']) # uint8
save_img_path = os.path.join(img_dir,
'{:s}_{:d}.png'.format(img_name, current_step))
util.save_img(sr_img, save_img_path)
assert sr_img is not None
# Save LQ images for reference
save_img_path_lq = os.path.join(img_dir,
'{:s}_LQ.png'.format(img_name))
if not os.path.isfile(save_img_path_lq):
lq_img = util.tensor2img(visuals['LQ']) # uint8
util.save_img(
cv2.resize(lq_img, dsize=None, fx=opt['scale'], fy=opt['scale'],
interpolation=cv2.INTER_NEAREST),
save_img_path_lq)
# Save GT images for reference
gt_img = util.tensor2img(visuals['GT']) # uint8
save_img_path_gt = os.path.join(img_dir,
'{:s}_GT.png'.format(img_name))
if not os.path.isfile(save_img_path_gt):
util.save_img(gt_img, save_img_path_gt)
# calculate PSNR
crop_size = opt['scale']
gt_img = gt_img / 255.
sr_img = sr_img / 255.
cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :]
cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :]
avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
avg_psnr = avg_psnr / idx
avg_nll = sum(nlls) / len(nlls)
# log
logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
logger_val = logging.getLogger('val') # validation logger
logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format(
epoch, current_step, avg_psnr))
# tensorboard logger
tb_logger_valid.add_scalar('loss/psnr', avg_psnr, current_step)
tb_logger_valid.add_scalar('loss/nll', avg_nll, current_step)
tb_logger_train.flush()
tb_logger_valid.flush()
#### save models and training states
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
if rank <= 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
timerData.tick()
with open(os.path.join(opt['path']['root'], "TRAIN_DONE"), 'w') as f:
f.write("TRAIN_DONE")
if rank <= 0:
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()
|