Spaces:
Running
Running
import numpy as np | |
import gdown | |
import gc | |
import os | |
import random | |
import time | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import torch | |
from torch import nn, optim | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from basicsr.archs.arch_util import to_2tuple, trunc_normal_ | |
from einops import rearrange | |
import math | |
class ChannelAttention(nn.Module): | |
"""Channel attention used in RCAN. | |
Args: | |
num_feat (int): Channel number of intermediate features. | |
squeeze_factor (int): Channel squeeze factor. Default: 16. | |
""" | |
def __init__(self, num_feat, squeeze_factor=16): | |
super(ChannelAttention, self).__init__() | |
self.attention = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), | |
nn.Sigmoid()) | |
def forward(self, x): | |
y = self.attention(x) | |
return x * y | |
class CAB(nn.Module): | |
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): | |
super(CAB, self).__init__() | |
self.cab = nn.Sequential( | |
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), | |
nn.GELU(), | |
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), | |
ChannelAttention(num_feat, squeeze_factor) | |
) | |
def forward(self, x): | |
return self.cab(x) | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (b, h, w, c) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*b, window_size, window_size, c) | |
""" | |
b, h, w, c = x.shape | |
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) | |
return windows | |
def window_reverse(windows, window_size, h, w): | |
""" | |
Args: | |
windows: (num_windows*b, window_size, window_size, c) | |
window_size (int): Window size | |
h (int): Height of image | |
w (int): Width of image | |
Returns: | |
x: (b, h, w, c) | |
""" | |
b = int(windows.shape[0] / (h * w / window_size / window_size)) | |
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) | |
return x | |
class WindowAttention(nn.Module): | |
r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, rpi, mask=None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*b, n, c) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
b_, n, c = x.shape | |
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nw = mask.shape[0] | |
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, n, n) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(b_, n, c) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
From: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class OCAB(nn.Module): | |
# overlapping cross-attention block | |
def __init__(self, dim, | |
input_resolution, | |
window_size, | |
overlap_ratio, | |
num_heads, | |
qkv_bias=True, | |
qk_scale=None, | |
mlp_ratio=2, | |
norm_layer=nn.LayerNorm | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.window_size = window_size | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.overlap_win_size = int(window_size * overlap_ratio) + window_size | |
self.norm1 = norm_layer(dim) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2) | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH | |
trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
self.proj = nn.Linear(dim,dim) | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU) | |
def forward(self, x, x_size, rpi): | |
h, w = x_size | |
b, _, c = x.shape | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(b, h, w, c) | |
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) # 3, b, c, h, w | |
q = qkv[0].permute(0, 2, 3, 1) # b, h, w, c | |
kv = torch.cat((qkv[1], qkv[2]), dim=1) # b, 2*c, h, w | |
# partition windows | |
q_windows = window_partition(q, self.window_size) # nw*b, window_size, window_size, c | |
q_windows = q_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c | |
kv_windows = self.unfold(kv) # b, c*w*w, nw | |
kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() # 2, nw*b, ow*ow, c | |
k_windows, v_windows = kv_windows[0], kv_windows[1] # nw*b, ow*ow, c | |
b_, nq, _ = q_windows.shape | |
_, n, _ = k_windows.shape | |
d = self.dim // self.num_heads | |
q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, nq, d | |
k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, d | |
v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) # nw*b, nH, n, d | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( | |
self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1) # ws*ws, wse*wse, nH | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, ws*ws, wse*wse | |
attn = attn + relative_position_bias.unsqueeze(0) | |
attn = self.softmax(attn) | |
attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim) | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim) | |
x = window_reverse(attn_windows, self.window_size, h, w) # b h w c | |
x = x.view(b, h * w, self.dim) | |
x = self.proj(x) + shortcut | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class HAB(nn.Module): | |
r""" Hybrid Attention Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, | |
dim, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
shift_size=0, | |
compress_ratio=3, | |
squeeze_factor=30, | |
conv_scale=0.01, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size' | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, | |
window_size=to_2tuple(self.window_size), | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop) | |
self.conv_scale = conv_scale | |
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, x_size, rpi_sa, attn_mask): | |
h, w = x_size | |
b, _, c = x.shape | |
# assert seq_len == h * w, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(b, h, w, c) | |
# Conv_X | |
conv_x = self.conv_block(x.permute(0, 3, 1, 2)) | |
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c) | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
attn_mask = attn_mask | |
else: | |
shifted_x = x | |
attn_mask = None | |
# partition windows | |
x_windows = window_partition(shifted_x, self.window_size) # nw*b, window_size, window_size, c | |
x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nw*b, window_size*window_size, c | |
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size | |
attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask) | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) | |
shifted_x = window_reverse(attn_windows, self.window_size, h, w) # b h' w' c | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
attn_x = shifted_x | |
attn_x = attn_x.view(b, h * w, c) | |
# FFN | |
x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class AttenBlocks(nn.Module): | |
""" A series of attention blocks for one RHAG. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__(self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
compress_ratio, | |
squeeze_factor, | |
conv_scale, | |
overlap_ratio, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
HAB( | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else window_size // 2, | |
compress_ratio=compress_ratio, | |
squeeze_factor=squeeze_factor, | |
conv_scale=conv_scale, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
norm_layer=norm_layer) for i in range(depth) | |
]) | |
# OCAB | |
self.overlap_attn = OCAB( | |
dim=dim, | |
input_resolution=input_resolution, | |
window_size=window_size, | |
overlap_ratio=overlap_ratio, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
mlp_ratio=mlp_ratio, | |
norm_layer=norm_layer | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) | |
else: | |
self.downsample = None | |
def forward(self, x, x_size, params): | |
for blk in self.blocks: | |
x = blk(x, x_size, params['rpi_sa'], params['attn_mask']) | |
x = self.overlap_attn(x, x_size, params['rpi_oca']) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
return x | |
class RHAG(nn.Module): | |
"""Residual Hybrid Attention Group (RHAG). | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
img_size: Input image size. | |
patch_size: Patch size. | |
resi_connection: The convolutional block before residual connection. | |
""" | |
def __init__(self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
compress_ratio, | |
squeeze_factor, | |
conv_scale, | |
overlap_ratio, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False, | |
img_size=224, | |
patch_size=4, | |
resi_connection='1conv'): | |
super(RHAG, self).__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.residual_group = AttenBlocks( | |
dim=dim, | |
input_resolution=input_resolution, | |
depth=depth, | |
num_heads=num_heads, | |
window_size=window_size, | |
compress_ratio=compress_ratio, | |
squeeze_factor=squeeze_factor, | |
conv_scale=conv_scale, | |
overlap_ratio=overlap_ratio, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path, | |
norm_layer=norm_layer, | |
downsample=downsample, | |
use_checkpoint=use_checkpoint) | |
if resi_connection == '1conv': | |
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) | |
elif resi_connection == 'identity': | |
self.conv = nn.Identity() | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) | |
self.patch_unembed = PatchUnEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) | |
def forward(self, x, x_size, params): | |
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x | |
class PatchEmbed(nn.Module): | |
r""" Image to Patch Embedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
x = x.flatten(2).transpose(1, 2) # b Ph*Pw c | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
class PatchUnEmbed(nn.Module): | |
r""" Image to Patch Unembedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
def forward(self, x, x_size): | |
x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c | |
return x | |
class Upsample(nn.Sequential): | |
"""Upsample module. | |
Args: | |
scale (int): Scale factor. Supported scales: 2^n and 3. | |
num_feat (int): Channel number of intermediate features. | |
""" | |
def __init__(self, scale, num_feat): | |
m = [] | |
if (scale & (scale - 1)) == 0: # scale = 2^n | |
for _ in range(int(math.log(scale, 2))): | |
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(2)) | |
elif scale == 3: | |
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) | |
m.append(nn.PixelShuffle(3)) | |
else: | |
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') | |
super(Upsample, self).__init__(*m) | |
class HAT(nn.Module): | |
r""" Hybrid Attention Transformer | |
A PyTorch implementation of : `Activating More Pixels in Image Super-Resolution Transformer`. | |
Some codes are based on SwinIR. | |
Args: | |
img_size (int | tuple(int)): Input image size. Default 64 | |
patch_size (int | tuple(int)): Patch size. Default: 1 | |
in_chans (int): Number of input image channels. Default: 3 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each Swin Transformer layer. | |
num_heads (tuple(int)): Number of attention heads in different layers. | |
window_size (int): Window size. Default: 7 | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction | |
img_range: Image range. 1. or 255. | |
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None | |
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' | |
""" | |
def __init__(self, | |
img_size=64, | |
patch_size=1, | |
in_chans=3, | |
embed_dim=96, | |
depths=(6, 6, 6, 6), | |
num_heads=(6, 6, 6, 6), | |
window_size=7, | |
compress_ratio=3, | |
squeeze_factor=30, | |
conv_scale=0.01, | |
overlap_ratio=0.5, | |
mlp_ratio=4., | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False, | |
upscale=2, | |
img_range=1., | |
upsampler='', | |
resi_connection='1conv', | |
**kwargs): | |
super(HAT, self).__init__() | |
self.window_size = window_size | |
self.shift_size = window_size // 2 | |
self.overlap_ratio = overlap_ratio | |
num_in_ch = in_chans | |
num_out_ch = in_chans | |
num_feat = 64 | |
self.img_range = img_range | |
if in_chans == 3: | |
rgb_mean = (0.4488, 0.4371, 0.4040) | |
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) | |
else: | |
self.mean = torch.zeros(1, 1, 1, 1) | |
self.upscale = upscale | |
self.upsampler = upsampler | |
# relative position index | |
relative_position_index_SA = self.calculate_rpi_sa() | |
relative_position_index_OCA = self.calculate_rpi_oca() | |
self.register_buffer('relative_position_index_SA', relative_position_index_SA) | |
self.register_buffer('relative_position_index_OCA', relative_position_index_OCA) | |
# ------------------------- 1, shallow feature extraction ------------------------- # | |
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) | |
# ------------------------- 2, deep feature extraction ------------------------- # | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.ape = ape | |
self.patch_norm = patch_norm | |
self.num_features = embed_dim | |
self.mlp_ratio = mlp_ratio | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=embed_dim, | |
embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
num_patches = self.patch_embed.num_patches | |
patches_resolution = self.patch_embed.patches_resolution | |
self.patches_resolution = patches_resolution | |
# merge non-overlapping patches into image | |
self.patch_unembed = PatchUnEmbed( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=embed_dim, | |
embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None) | |
# absolute position embedding | |
if self.ape: | |
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) | |
trunc_normal_(self.absolute_pos_embed, std=.02) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build Residual Hybrid Attention Groups (RHAG) | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = RHAG( | |
dim=embed_dim, | |
input_resolution=(patches_resolution[0], patches_resolution[1]), | |
depth=depths[i_layer], | |
num_heads=num_heads[i_layer], | |
window_size=window_size, | |
compress_ratio=compress_ratio, | |
squeeze_factor=squeeze_factor, | |
conv_scale=conv_scale, | |
overlap_ratio=overlap_ratio, | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results | |
norm_layer=norm_layer, | |
downsample=None, | |
use_checkpoint=use_checkpoint, | |
img_size=img_size, | |
patch_size=patch_size, | |
resi_connection=resi_connection) | |
self.layers.append(layer) | |
self.norm = norm_layer(self.num_features) | |
# build the last conv layer in deep feature extraction | |
if resi_connection == '1conv': | |
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) | |
elif resi_connection == 'identity': | |
self.conv_after_body = nn.Identity() | |
# ------------------------- 3, high quality image reconstruction ------------------------- # | |
if self.upsampler == 'pixelshuffle': | |
# for classical SR | |
self.conv_before_upsample = nn.Sequential( | |
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) | |
self.upsample = Upsample(upscale, num_feat) | |
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def calculate_rpi_sa(self): | |
# calculate relative position index for SA | |
coords_h = torch.arange(self.window_size) | |
coords_w = torch.arange(self.window_size) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
return relative_position_index | |
def calculate_rpi_oca(self): | |
# calculate relative position index for OCA | |
window_size_ori = self.window_size | |
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size) | |
coords_h = torch.arange(window_size_ori) | |
coords_w = torch.arange(window_size_ori) | |
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, ws, ws | |
coords_ori_flatten = torch.flatten(coords_ori, 1) # 2, ws*ws | |
coords_h = torch.arange(window_size_ext) | |
coords_w = torch.arange(window_size_ext) | |
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, wse, wse | |
coords_ext_flatten = torch.flatten(coords_ext, 1) # 2, wse*wse | |
relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None] # 2, ws*ws, wse*wse | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # ws*ws, wse*wse, 2 | |
relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1 | |
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1 | |
relative_position_index = relative_coords.sum(-1) | |
return relative_position_index | |
def calculate_mask(self, x_size): | |
# calculate attention mask for SW-MSA | |
h, w = x_size | |
img_mask = torch.zeros((1, h, w, 1)) # 1 h w 1 | |
h_slices = (slice(0, -self.window_size), slice(-self.window_size, | |
-self.shift_size), slice(-self.shift_size, None)) | |
w_slices = (slice(0, -self.window_size), slice(-self.window_size, | |
-self.shift_size), slice(-self.shift_size, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, self.window_size) # nw, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
return attn_mask | |
def no_weight_decay(self): | |
return {'absolute_pos_embed'} | |
def no_weight_decay_keywords(self): | |
return {'relative_position_bias_table'} | |
def forward_features(self, x): | |
x_size = (x.shape[2], x.shape[3]) | |
# Calculate attention mask and relative position index in advance to speed up inference. | |
# The original code is very time-consuming for large window size. | |
attn_mask = self.calculate_mask(x_size).to(x.device) | |
params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA} | |
x = self.patch_embed(x) | |
if self.ape: | |
x = x + self.absolute_pos_embed | |
x = self.pos_drop(x) | |
for layer in self.layers: | |
x = layer(x, x_size, params) | |
x = self.norm(x) # b seq_len c | |
x = self.patch_unembed(x, x_size) | |
return x | |
def forward(self, x): | |
self.mean = self.mean.type_as(x) | |
x = (x - self.mean) * self.img_range | |
if self.upsampler == 'pixelshuffle': | |
# for classical SR | |
x = self.conv_first(x) | |
x = self.conv_after_body(self.forward_features(x)) + x | |
x = self.conv_before_upsample(x) | |
x = self.conv_last(self.upsample(x)) | |
x = x / self.img_range + self.mean | |
return x | |
# ------------------------------ HYPERPARAMS ------------------------------ # | |
config = { | |
"network_g": { | |
"type": "HAT", | |
"upscale": 4, | |
"in_chans": 3, | |
"img_size": 64, | |
"window_size": 16, | |
"compress_ratio": 3, | |
"squeeze_factor": 30, | |
"conv_scale": 0.01, | |
"overlap_ratio": 0.5, | |
"img_range": 1., | |
"depths": [6, 6, 6, 6, 6, 6], | |
"embed_dim": 180, | |
"num_heads": [6, 6, 6, 6, 6, 6], | |
"mlp_ratio": 2, | |
"upsampler": 'pixelshuffle', | |
"resi_connection": '1conv' | |
}, | |
"train": { | |
"ema_decay": 0.999, | |
"optim_g": { | |
"type": "Adam", | |
"lr": 1e-4, | |
"weight_decay": 0, | |
"betas": [0.9, 0.99] | |
}, | |
"scheduler": { | |
"type": "MultiStepLR", | |
"milestones": [12, 20, 25, 30], | |
"gamma": 0.5 | |
}, | |
"total_iter": 30, | |
"warmup_iter": -1, | |
"pixel_opt": { | |
"type": "L1Loss", | |
"loss_weight": 1.0, | |
"reduction": "mean" | |
} | |
}, | |
'tile':{ | |
'tile_size': 56, | |
'tile_pad': 4 | |
} | |
} | |
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# DEVICE = torch.device('mps' if torch.backends.mps.is_built() else 'cpu') | |
print('device', DEVICE) | |
class Network: | |
def __init__(self,config = config, device=DEVICE): | |
self.config = config | |
self.device = device | |
self.model = HAT( | |
upscale=self.config['network_g']['upscale'], | |
in_chans=self.config['network_g']['in_chans'], | |
img_size=self.config['network_g']['img_size'], | |
window_size=self.config['network_g']['window_size'], | |
compress_ratio=self.config['network_g']['compress_ratio'], | |
squeeze_factor=self.config['network_g']['squeeze_factor'], | |
conv_scale=self.config['network_g']['conv_scale'], | |
overlap_ratio=self.config['network_g']['overlap_ratio'], | |
img_range=self.config['network_g']['img_range'], | |
depths=self.config['network_g']['depths'], | |
embed_dim=self.config['network_g']['embed_dim'], | |
num_heads=self.config['network_g']['num_heads'], | |
mlp_ratio=self.config['network_g']['mlp_ratio'], | |
upsampler=self.config['network_g']['upsampler'], | |
resi_connection=self.config['network_g']['resi_connection'] | |
).to(self.device) | |
self.optimizer = optim.Adam(self.model.parameters(), lr=self.config['train']['optim_g']['lr'], weight_decay=config['train']['optim_g']['weight_decay'],betas=tuple(config['train']['optim_g']['betas'])) | |
def load_network(self, checkpoint_path): | |
checkpoint = torch.load(checkpoint_path, map_location=self.device) | |
self.model.load_state_dict(checkpoint['model']) | |
self.optimizer.load_state_dict(checkpoint['optimizer']) # before create and load scheduler | |
def pre_process(self): | |
# pad to multiplication of window_size | |
window_size = self.config['network_g']['window_size'] * 4 | |
self.scale = self.config['network_g']['upscale'] | |
self.mod_pad_h, self.mod_pad_w = 0, 0 | |
_, _, h, w = self.input_tile.size() | |
if h % window_size != 0: | |
self.mod_pad_h = window_size - h % window_size | |
# Loop to add padding to the height until it's a multiple of window_size | |
for i in range(self.mod_pad_h): | |
self.input_tile = F.pad(self.input_tile, (0, 0, 0, 1), 'reflect') | |
if w % window_size != 0: | |
# Loop to add padding to the width until it's a multiple of window_size | |
self.mod_pad_w = window_size - w % window_size | |
for i in range(self.mod_pad_w): | |
self.input_tile = F.pad(self.input_tile, (0, 1, 0, 0), 'reflect') | |
def post_process(self): | |
_, _, h, w = self.output_tile.size() | |
self.output_tile = self.output_tile[:, :, 0:h - self.mod_pad_h * self.scale, 0:w - self.mod_pad_w * self.scale] | |
def tile_valid(self, lr_images): | |
""" | |
Process all tiles of an image in a batch and then merge them back into the output image. | |
""" | |
batch, channel, height, width = lr_images.shape | |
output_height = height * self.config['network_g']['upscale'] | |
output_width = width * self.config['network_g']['upscale'] | |
output_shape = (batch, channel, output_height, output_width) | |
# Start with black image for output | |
sr_images = lr_images.new_zeros(output_shape) | |
tiles_x = math.ceil(width / self.config['tile']['tile_size']) | |
tiles_y = math.ceil(height / self.config['tile']['tile_size']) | |
tile_list = [] | |
# Extract all tiles | |
for y in range(tiles_y): | |
for x in range(tiles_x): | |
input_start_x = x * self.config['tile']['tile_size'] | |
input_end_x = min(input_start_x + self.config['tile']['tile_size'], width) | |
input_start_y = y * self.config['tile']['tile_size'] | |
input_end_y = min(input_start_y + self.config['tile']['tile_size'], height) | |
input_start_x_pad = max(input_start_x - self.config['tile']['tile_pad'], 0) | |
input_end_x_pad = min(input_end_x + self.config['tile']['tile_pad'], width) | |
input_start_y_pad = max(input_start_y - self.config['tile']['tile_pad'], 0) | |
input_end_y_pad = min(input_end_y + self.config['tile']['tile_pad'], height) | |
# Extract tile and add to list | |
self.input_tile = lr_images[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] | |
self.pre_process() | |
tile_list.append(self.input_tile.clone()) | |
output_tiles = [] | |
# Determine the number of tiles to process per batch | |
batch_size = 16 # Adjust based on your specific situation | |
for i in range(0, len(tile_list), batch_size): | |
# Extract a batch of tiles | |
batch = tile_list[i:i + batch_size] | |
tile_batch = torch.cat(batch, dim=0) # This creates a batch of tiles | |
# Process the batch through the model | |
self.model.eval() | |
with torch.no_grad(): | |
# Ensure that each tile processed by the model returns a 3D tensor (C, H, W) | |
output_batch = self.model(tile_batch) | |
# Extend the list of processed tiles | |
output_tiles.append(output_batch) # Assuming output_batch is 4D | |
# Concatenate along the first dimension to combine all the processed tiles | |
output_tile_batch = torch.cat(output_tiles, dim=0) # This should be 4D now | |
for y in range(tiles_y): | |
for x in range(tiles_x): | |
# input tile area on total image | |
input_start_x = x * self.config['tile']['tile_size'] | |
input_end_x = min(input_start_x + self.config['tile']['tile_size'], width) | |
input_start_y = y * self.config['tile']['tile_size'] | |
input_end_y = min(input_start_y + self.config['tile']['tile_size'], height) | |
# input tile area on total image with padding | |
input_start_x_pad = max(input_start_x - self.config['tile']['tile_pad'], 0) | |
input_end_x_pad = min(input_end_x + self.config['tile']['tile_pad'], width) | |
input_start_y_pad = max(input_start_y - self.config['tile']['tile_pad'], 0) | |
input_end_y_pad = min(input_end_y + self.config['tile']['tile_pad'], height) | |
# input tile dimensions | |
input_tile_width = input_end_x - input_start_x | |
input_tile_height = input_end_y - input_start_y | |
tile_idx = y * tiles_x + x | |
self.pre_process() | |
self.output_tile = output_tile_batch[tile_idx, :, :, :].unsqueeze(0).clone() | |
self.post_process() | |
# output tile area on total image | |
output_start_x = input_start_x * self.config['network_g']['upscale'] | |
output_end_x = input_end_x * self.config['network_g']['upscale'] | |
output_start_y = input_start_y * self.config['network_g']['upscale'] | |
output_end_y = input_end_y * self.config['network_g']['upscale'] | |
# output tile area without padding | |
output_start_x_tile = (input_start_x - input_start_x_pad) * self.config['network_g']['upscale'] | |
output_end_x_tile = output_start_x_tile + input_tile_width * self.config['network_g']['upscale'] | |
output_start_y_tile = (input_start_y - input_start_y_pad) * self.config['network_g']['upscale'] | |
output_end_y_tile = output_start_y_tile + input_tile_height * self.config['network_g']['upscale'] | |
# put tile into output image | |
sr_images[:, :, output_start_y:output_end_y, | |
output_start_x:output_end_x] = self.output_tile[:, :, output_start_y_tile:output_end_y_tile, | |
output_start_x_tile:output_end_x_tile] | |
del self.input_tile, self.output_tile, tile_batch, tile_list, output_tile_batch, output_tiles | |
gc.collect() | |
torch.cuda.empty_cache() | |
return sr_images | |
def inference(self, lr_image, hr_image = None, deployment = False): | |
""" | |
- lr_image: torch.Tensor | |
3D Tensor (C, H, W) | |
- hr_image: torch.Tesnor | |
3D Tensor (C, H, W). This parameter is optional, for comparing the model output and the | |
ground-truth high-res image. If used solely for inference, skip this. Default is None/ | |
""" | |
lr_image = lr_image.unsqueeze(0).to(self.device) | |
self.for_inference = True | |
with torch.no_grad(): | |
sr_image = self.tile_valid(lr_image) | |
sr_image = torch.clamp(sr_image, 0, 1) | |
if deployment: | |
return sr_image.squeeze(0) | |
else: | |
lr_image = lr_image.squeeze(0) | |
sr_image = sr_image.squeeze(0) | |
print(">> Size of low-res image:", lr_image.size()) | |
print(">> Size of super-res image:", sr_image.size()) | |
if hr_image != None: | |
print(">> Size of high-res image:", hr_image.size()) | |
if hr_image != None: | |
fig, axes = plt.subplots(1, 3, figsize=(10, 6)) | |
axes[0].imshow(lr_image.cpu().detach().permute((1, 2, 0))) | |
axes[0].set_title('Low Resolution') | |
axes[1].imshow(sr_image.cpu().detach().permute((1, 2, 0))) | |
axes[1].set_title('Super Resolution') | |
axes[2].imshow(hr_image.cpu().detach().permute((1, 2, 0))) | |
axes[2].set_title('High Resolution') | |
for ax in axes.flat: | |
ax.axis('off') | |
else: | |
fig, axes = plt.subplots(1, 2, figsize=(10, 6)) | |
axes[0].imshow(lr_image.cpu().detach().permute((1, 2, 0))) | |
axes[0].set_title('Low Resolution') | |
axes[1].imshow(sr_image.cpu().detach().permute((1, 2, 0))) | |
axes[1].set_title('Super Resolution') | |
for ax in axes.flat: | |
ax.axis('off') | |
plt.tight_layout() | |
plt.show() | |
return sr_image | |
def HAT_for_deployment(lr_image, model_path = 'models/HAT/hat_model_checkpoint_best.pth'): | |
lr_image = transforms.functional.to_tensor(lr_image) | |
hat = Network() | |
hat.load_network(model_path) | |
t1 = time.time() | |
sr_image = hat.inference(lr_image, deployment=True).cpu().numpy() | |
t2 = time.time() | |
print("Time taken to infer:", t2 - t1) | |
# If image is in [C, H, W] format, transpose it to [H, W, C] | |
sr_image = np.transpose(sr_image, (1, 2, 0)) | |
if sr_image.max() <= 1.0: | |
sr_image = (sr_image * 255).astype(np.uint8) | |
sr_image = Image.fromarray(sr_image) | |
return sr_image | |
if __name__ == "__main__": | |
import os | |
import sys | |
# Getting to the true directory | |
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../")) | |
# Define the model's file path and the Google Drive link | |
model_path = 'models/HAT/hat_model_checkpoint_best.pth' | |
gdrive_id = '1LHIUM7YoUDk8cXWzVZhroAcA1xXi-d87' # Replace with your actual Google Drive file URL | |
# Check if the model file exists | |
if not os.path.exists(model_path): | |
print(f"Model file not found at {model_path}. Downloading from Google Drive...") | |
# Ensure the directory exists, as gdown will not automatically create directory paths | |
os.makedirs(os.path.dirname(model_path), exist_ok=True) | |
# Download the file from Google Drive | |
# gdown.download(id=gdrive_id, output=model_path, quiet=False) | |
else: | |
print(f"Model file found at {model_path}. No need to download.") | |
image_path = "images/demo.png" | |
lr_image = Image.open(image_path) | |
# lr_image = transforms.functional.to_tensor(lr_image) | |
# hat = Network() | |
# hat.load_network(model_path) | |
# hat.inference(lr_image) | |
print(HAT_for_deployment(lr_image, model_path)) | |