hail75 commited on
Commit
19f318d
·
1 Parent(s): 20190bf

delete unnecessary files

Browse files
models/SRFlow/__pycache__/srflow.cpython-311.pyc DELETED
Binary file (2.18 kB)
 
models/SRFlow/code/Measure.py DELETED
@@ -1,134 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import glob
16
- import os
17
- import time
18
- from collections import OrderedDict
19
-
20
- import numpy as np
21
- import torch
22
- import cv2
23
- import argparse
24
-
25
- from natsort import natsort
26
- from skimage.metrics import structural_similarity as ssim
27
- from skimage.metrics import peak_signal_noise_ratio as psnr
28
- import lpips
29
-
30
-
31
- class Measure():
32
- def __init__(self, net='alex', use_gpu=False):
33
- self.device = 'cuda' if use_gpu else 'cpu'
34
- self.model = lpips.LPIPS(net=net)
35
- self.model.to(self.device)
36
-
37
- def measure(self, imgA, imgB):
38
- return [float(f(imgA, imgB)) for f in [self.psnr, self.ssim, self.lpips]]
39
-
40
- def lpips(self, imgA, imgB, model=None):
41
- tA = t(imgA).to(self.device)
42
- tB = t(imgB).to(self.device)
43
- dist01 = self.model.forward(tA, tB).item()
44
- return dist01
45
-
46
- def ssim(self, imgA, imgB):
47
- # multichannel: If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged.
48
- score, diff = ssim(imgA, imgB, full=True, multichannel=True, channel_axis=-1)
49
- return score
50
-
51
- def psnr(self, imgA, imgB):
52
- psnr_val = psnr(imgA, imgB)
53
- return psnr_val
54
-
55
-
56
- def t(img):
57
- def to_4d(img):
58
- assert len(img.shape) == 3
59
- assert img.dtype == np.uint8
60
- img_new = np.expand_dims(img, axis=0)
61
- assert len(img_new.shape) == 4
62
- return img_new
63
-
64
- def to_CHW(img):
65
- return np.transpose(img, [2, 0, 1])
66
-
67
- def to_tensor(img):
68
- return torch.Tensor(img)
69
-
70
- return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1
71
-
72
-
73
- def fiFindByWildcard(wildcard):
74
- return natsort.natsorted(glob.glob(wildcard, recursive=True))
75
-
76
-
77
- def imread(path):
78
- return cv2.imread(path)[:, :, [2, 1, 0]]
79
-
80
-
81
- def format_result(psnr, ssim, lpips):
82
- return f'{psnr:0.2f}, {ssim:0.3f}, {lpips:0.3f}'
83
-
84
- def measure_dirs(dirA, dirB, use_gpu, verbose=False):
85
- if verbose:
86
- vprint = lambda x: print(x)
87
- else:
88
- vprint = lambda x: None
89
-
90
-
91
- t_init = time.time()
92
-
93
- paths_A = fiFindByWildcard(os.path.join(dirA, f'*.{type}'))
94
- paths_B = fiFindByWildcard(os.path.join(dirB, f'*.{type}'))
95
-
96
- vprint("Comparing: ")
97
- vprint(dirA)
98
- vprint(dirB)
99
-
100
- measure = Measure(use_gpu=use_gpu)
101
-
102
- results = []
103
- for pathA, pathB in zip(paths_A, paths_B):
104
- result = OrderedDict()
105
-
106
- t = time.time()
107
- result['psnr'], result['ssim'], result['lpips'] = measure.measure(imread(pathA), imread(pathB))
108
- d = time.time() - t
109
- vprint(f"{pathA.split('/')[-1]}, {pathB.split('/')[-1]}, {format_result(**result)}, {d:0.1f}")
110
-
111
- results.append(result)
112
-
113
- psnr = np.mean([result['psnr'] for result in results])
114
- ssim = np.mean([result['ssim'] for result in results])
115
- lpips = np.mean([result['lpips'] for result in results])
116
-
117
- vprint(f"Final Result: {format_result(psnr, ssim, lpips)}, {time.time() - t_init:0.1f}s")
118
-
119
-
120
- if __name__ == "__main__":
121
- parser = argparse.ArgumentParser()
122
- parser.add_argument('-dirA', default='', type=str)
123
- parser.add_argument('-dirB', default='', type=str)
124
- parser.add_argument('-type', default='png')
125
- parser.add_argument('--use_gpu', action='store_true', default=False)
126
- args = parser.parse_args()
127
-
128
- dirA = args.dirA
129
- dirB = args.dirB
130
- type = args.type
131
- use_gpu = args.use_gpu
132
-
133
- if len(dirA) > 0 and len(dirB) > 0:
134
- measure_dirs(dirA, dirB, use_gpu=use_gpu, verbose=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/__init__.py CHANGED
@@ -22,7 +22,6 @@ sys.path.append('../..')
22
  from natsort import natsort
23
  import SRFlow.code.options.options as option
24
 
25
- from SRFlow.code.models import create_model
26
  import torch
27
  from SRFlow.code.utils.util import opt_get
28
  from SRFlow.code.models.SRFlow_model import SRFlowModel
 
22
  from natsort import natsort
23
  import SRFlow.code.options.options as option
24
 
 
25
  import torch
26
  from SRFlow.code.utils.util import opt_get
27
  from SRFlow.code.models.SRFlow_model import SRFlowModel
models/SRFlow/code/__pycache__/__init__.cpython-311.pyc CHANGED
Binary files a/models/SRFlow/code/__pycache__/__init__.cpython-311.pyc and b/models/SRFlow/code/__pycache__/__init__.cpython-311.pyc differ
 
models/SRFlow/code/a.py DELETED
@@ -1,27 +0,0 @@
1
- import pickle
2
- import numpy as np
3
- import os
4
- import matplotlib.pyplot as plt
5
-
6
- def load_pkls(path):
7
- assert os.path.isfile(path), path
8
- images = []
9
- with open(path, "rb") as f:
10
- images += pickle.load(f)
11
- assert len(images) > 0, path
12
- images = [np.transpose(image, [2, 0, 1]) for image in images]
13
- return images
14
-
15
- path = 'datasets/DIV2K-va.pklv4'
16
- loaded_images = load_pkls(path)
17
- print(len(loaded_images))
18
- # Display the first image
19
- if loaded_images:
20
- first_image = loaded_images[11]
21
- plt.imshow(np.transpose(first_image, [1, 2, 0])) # Transpose image to original shape [height, width, channels]
22
- plt.title('First Image')
23
- plt.axis('off') # Hide axis
24
- plt.show()
25
- else:
26
- print("No images loaded from the pickle file.")
27
- print(loaded_images[11])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/RRDB_CelebA_8X.yml DELETED
@@ -1,83 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SR
21
- distortion: sr
22
- scale: 8
23
- #gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/celebA-train-gt_1pct.pklv4
31
- dataroot_LQ: ../datasets/celebA-train-x8_1pct.pklv4
32
-
33
- use_shuffle: true
34
- n_workers: 0 # per GPU
35
- batch_size: 16
36
- GT_size: 160
37
- use_flip: true
38
- use_rot: true
39
- color: RGB
40
- val:
41
- name: CelebA_160_va
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/celebA-valid-gt_1pct.pklv4
44
- dataroot_LQ: ../datasets/celebA-valid-x8_1pct.pklv4
45
- n_max: 10
46
-
47
- #### network structures
48
- network_G:
49
- which_model_G: RRDBNet
50
- in_nc: 3
51
- out_nc: 3
52
- nf: 64
53
- nb: 23
54
-
55
- #### path
56
- path:
57
- pretrain_model_G: ~
58
- strict_load: true
59
- resume_state: auto
60
-
61
- #### training settings: learning rate scheme, loss
62
- train:
63
- lr_G: !!float 2e-4
64
- lr_scheme: CosineAnnealingLR_Restart
65
- beta1: 0.9
66
- beta2: 0.99
67
- niter: 200000
68
- warmup_iter: -1 # no warm up
69
- T_period: [ 50000, 50000, 50000, 50000 ]
70
- restarts: [ 50000, 100000, 150000 ]
71
- restart_weights: [ 1, 1, 1 ]
72
- eta_min: !!float 1e-7
73
-
74
- pixel_criterion: l1
75
- pixel_weight: 1.0
76
-
77
- manual_seed: 10
78
- val_freq: !!float 5e3
79
-
80
- #### logger
81
- logger:
82
- print_freq: 100
83
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/RRDB_DF2K_4X.yml DELETED
@@ -1,85 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SR
21
- distortion: sr
22
- scale: 4
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/DF2K-train-gt_1pct.pklv4
31
- dataroot_LQ: ../datasets/DF2K-train-x4_1pct.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
- val:
41
- name: CelebA_160_va
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/DF2K-valid-gt_1pct.pklv4
44
- dataroot_LQ: ../datasets/DF2K-valid-x4_1pct.pklv4
45
- quant: 32
46
- n_max: 20
47
-
48
- #### network structures
49
- network_G:
50
- which_model_G: RRDBNet
51
- use_orig: True
52
- in_nc: 3
53
- out_nc: 3
54
- nf: 64
55
- nb: 23
56
-
57
- #### path
58
- path:
59
- pretrain_model_G: ~
60
- strict_load: true
61
- resume_state: auto
62
-
63
- #### training settings: learning rate scheme, loss
64
- train:
65
- lr_G: !!float 2e-4
66
- lr_scheme: CosineAnnealingLR_Restart
67
- beta1: 0.9
68
- beta2: 0.99
69
- niter: 1000000
70
- warmup_iter: -1 # no warm up
71
- T_period: [ 50000, 50000, 50000, 50000 ]
72
- restarts: [ 50000, 100000, 150000 ]
73
- restart_weights: [ 1, 1, 1 ]
74
- eta_min: !!float 1e-7
75
-
76
- pixel_criterion: l1
77
- pixel_weight: 1.0
78
-
79
- manual_seed: 10
80
- val_freq: !!float 5e3
81
-
82
- #### logger
83
- logger:
84
- print_freq: 100
85
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/RRDB_DF2K_8X.yml DELETED
@@ -1,85 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SR
21
- distortion: sr
22
- scale: 8
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/DF2K-train-gt_1pct.pklv4
31
- dataroot_LQ: ../datasets/DF2K-train-x8_1pct.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
-
41
- val:
42
- name: CelebA_160_va
43
- mode: LRHR_PKL
44
- dataroot_GT: ../datasets/DF2K-valid-gt_1pct.pklv4
45
- dataroot_LQ: ../datasets/DF2K-valid-x8_1pct.pklv4
46
- quant: 32
47
- n_max: 20
48
-
49
- #### network structures
50
- network_G:
51
- which_model_G: RRDBNet
52
- in_nc: 3
53
- out_nc: 3
54
- nf: 64
55
- nb: 23
56
-
57
- #### path
58
- path:
59
- pretrain_model_G: ~
60
- strict_load: true
61
- resume_state: auto
62
-
63
- #### training settings: learning rate scheme, loss
64
- train:
65
- lr_G: !!float 2e-4
66
- lr_scheme: CosineAnnealingLR_Restart
67
- beta1: 0.9
68
- beta2: 0.99
69
- niter: 200000
70
- warmup_iter: -1 # no warm up
71
- T_period: [ 50000, 50000, 50000, 50000 ]
72
- restarts: [ 50000, 100000, 150000 ]
73
- restart_weights: [ 1, 1, 1 ]
74
- eta_min: !!float 1e-7
75
-
76
- pixel_criterion: l1
77
- pixel_weight: 1.0
78
-
79
- manual_seed: 10
80
- val_freq: !!float 5e3
81
-
82
- #### logger
83
- logger:
84
- print_freq: 100
85
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/SRFlow_CelebA_8X.yml DELETED
@@ -1,107 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SRFlow
21
- distortion: sr
22
- scale: 8
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/celebA-train-gt.pklv4
31
- dataroot_LQ: ../datasets/celebA-train-x8.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
- val:
41
- name: CelebA_160_va
42
- mode: LRHR_PKL
43
- dataroot_GT: ../datasets/celebA-train-gt.pklv4
44
- dataroot_LQ: ../datasets/celebA-train-x8.pklv4
45
- quant: 32
46
- n_max: 20
47
-
48
- #### Test Settings
49
- dataroot_GT: ../datasets/celebA-validation-gt
50
- dataroot_LR: ../datasets/celebA-validation-x8
51
- model_path: ../pretrained_models/SRFlow_CelebA_8X.pth
52
- heat: 0.9 # This is the standard deviation of the latent vectors
53
-
54
- #### network structures
55
- network_G:
56
- which_model_G: SRFlowNet
57
- in_nc: 3
58
- out_nc: 3
59
- nf: 64
60
- nb: 8
61
- upscale: 8
62
- train_RRDB: false
63
- train_RRDB_delay: 0.5
64
-
65
- flow:
66
- K: 16
67
- L: 4
68
- noInitialInj: true
69
- coupling: CondAffineSeparatedAndCond
70
- additionalFlowNoAffine: 2
71
- split:
72
- enable: true
73
- fea_up0: true
74
- stackRRDB:
75
- blocks: [ 1, 3, 5, 7 ]
76
- concat: true
77
-
78
- #### path
79
- path:
80
- pretrain_model_G: ../pretrained_models/RRDB_CelebA_8X.pth
81
- strict_load: true
82
- resume_state: auto
83
-
84
- #### training settings: learning rate scheme, loss
85
- train:
86
- manual_seed: 10
87
- lr_G: !!float 5e-4
88
- weight_decay_G: 0
89
- beta1: 0.9
90
- beta2: 0.99
91
- lr_scheme: MultiStepLR
92
- warmup_iter: -1 # no warm up
93
- lr_steps_rel: [ 0.5, 0.75, 0.9, 0.95 ]
94
- lr_gamma: 0.5
95
-
96
- niter: 200000
97
- val_freq: 40000
98
-
99
- #### validation settings
100
- val:
101
- heats: [ 0.0, 0.5, 0.75, 1.0 ]
102
- n_sample: 3
103
-
104
- #### logger
105
- logger:
106
- print_freq: 100
107
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/confs/SRFlow_DF2K_8X.yml DELETED
@@ -1,112 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- #### general settings
18
- name: train
19
- use_tb_logger: true
20
- model: SRFlow
21
- distortion: sr
22
- scale: 8
23
- gpu_ids: [ 0 ]
24
-
25
- #### datasets
26
- datasets:
27
- train:
28
- name: CelebA_160_tr
29
- mode: LRHR_PKL
30
- dataroot_GT: ../datasets/DF2K-tr.pklv4
31
- dataroot_LQ: ../datasets/DF2K-tr_X8.pklv4
32
- quant: 32
33
-
34
- use_shuffle: true
35
- n_workers: 3 # per GPU
36
- batch_size: 16
37
- GT_size: 160
38
- use_flip: true
39
- color: RGB
40
-
41
- val:
42
- name: CelebA_160_va
43
- mode: LRHR_PKL
44
- dataroot_GT: ../datasets/DIV2K-va.pklv4
45
- dataroot_LQ: ../datasets/DIV2K-va_X8.pklv4
46
- quant: 32
47
- n_max: 20
48
-
49
- #### Test Settings
50
- dataroot_GT: ../datasets/div2k-validation-modcrop8-gt
51
- dataroot_LR: ../datasets/div2k-validation-modcrop8-x8
52
- model_path: ../pretrained_models/SRFlow_DF2K_8X.pth
53
- heat: 0.9 # This is the standard deviation of the latent vectors
54
-
55
- #### network structures
56
- network_G:
57
- which_model_G: SRFlowNet
58
- in_nc: 3
59
- out_nc: 3
60
- nf: 64
61
- nb: 23
62
- upscale: 8
63
- train_RRDB: false
64
- train_RRDB_delay: 0.5
65
-
66
- flow:
67
- K: 16
68
- L: 4
69
- noInitialInj: true
70
- coupling: CondAffineSeparatedAndCond
71
- additionalFlowNoAffine: 2
72
- split:
73
- enable: true
74
- fea_up0: true
75
- stackRRDB:
76
- blocks: [ 1, 3, 5, 7 ]
77
- concat: true
78
-
79
- #### path
80
- path:
81
- pretrain_model_G: ../pretrained_models/RRDB_DF2K_8X.pth
82
- strict_load: true
83
- resume_state: auto
84
-
85
- #### training settings: learning rate scheme, loss
86
- train:
87
- manual_seed: 10
88
- lr_G: !!float 5e-4
89
- weight_decay_G: 0
90
- beta1: 0.9
91
- beta2: 0.99
92
- lr_scheme: MultiStepLR
93
- warmup_iter: -1 # no warm up
94
- lr_steps_rel: [ 0.5, 0.75, 0.9, 0.95 ]
95
- lr_gamma: 0.5
96
-
97
- niter: 200000
98
- val_freq: 40000
99
-
100
- #### validation settings
101
- val:
102
- heats: [ 0.0, 0.5, 0.75, 1.0 ]
103
- n_sample: 3
104
-
105
- test:
106
- heats: [ 0.0, 0.7, 0.8, 0.9 ]
107
-
108
- #### logger
109
- logger:
110
- # Debug print_freq: 100
111
- print_freq: 100
112
- save_checkpoint_freq: !!float 1e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/data/LRHR_PKL_dataset.py DELETED
@@ -1,179 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import os
18
- import subprocess
19
- import torch.utils.data as data
20
- import numpy as np
21
- import time
22
- import torch
23
-
24
- import pickle
25
-
26
-
27
- class LRHR_PKLDataset(data.Dataset):
28
- def __init__(self, opt):
29
- super(LRHR_PKLDataset, self).__init__()
30
- self.opt = opt
31
- self.crop_size = opt.get("GT_size", None)
32
- self.scale = None
33
- self.random_scale_list = [1]
34
-
35
- hr_file_path = opt["dataroot_GT"]
36
- lr_file_path = opt["dataroot_LQ"]
37
- y_labels_file_path = opt['dataroot_y_labels']
38
-
39
- gpu = True
40
- augment = True
41
-
42
- self.use_flip = opt["use_flip"] if "use_flip" in opt.keys() else False
43
- self.use_rot = opt["use_rot"] if "use_rot" in opt.keys() else False
44
- self.use_crop = opt["use_crop"] if "use_crop" in opt.keys() else False
45
- self.center_crop_hr_size = opt.get("center_crop_hr_size", None)
46
-
47
- n_max = opt["n_max"] if "n_max" in opt.keys() else int(1e8)
48
-
49
- t = time.time()
50
- self.lr_images = self.load_pkls(lr_file_path, n_max)
51
- self.hr_images = self.load_pkls(hr_file_path, n_max)
52
-
53
- min_val_hr = np.min([i.min() for i in self.hr_images[:20]])
54
- max_val_hr = np.max([i.max() for i in self.hr_images[:20]])
55
-
56
- min_val_lr = np.min([i.min() for i in self.lr_images[:20]])
57
- max_val_lr = np.max([i.max() for i in self.lr_images[:20]])
58
-
59
- t = time.time() - t
60
- print("Loaded {} HR images with [{:.2f}, {:.2f}] in {:.2f}s from {}".
61
- format(len(self.hr_images), min_val_hr, max_val_hr, t, hr_file_path))
62
- print("Loaded {} LR images with [{:.2f}, {:.2f}] in {:.2f}s from {}".
63
- format(len(self.lr_images), min_val_lr, max_val_lr, t, lr_file_path))
64
-
65
- self.gpu = gpu
66
- self.augment = augment
67
-
68
- self.measures = None
69
-
70
- def load_pkls(self, path, n_max):
71
- assert os.path.isfile(path), path
72
- images = []
73
- with open(path, "rb") as f:
74
- images += pickle.load(f)
75
- assert len(images) > 0, path
76
- images = images[:n_max]
77
- images = [np.transpose(image, [2, 0, 1]) for image in images]
78
- return images
79
-
80
- def __len__(self):
81
- return len(self.hr_images)
82
-
83
- def __getitem__(self, item):
84
- hr = self.hr_images[item]
85
- lr = self.lr_images[item]
86
-
87
- if self.scale == None:
88
- self.scale = hr.shape[1] // lr.shape[1]
89
- assert hr.shape[1] == self.scale * lr.shape[1], ('non-fractional ratio', lr.shape, hr.shape)
90
-
91
- if self.use_crop:
92
- hr, lr = random_crop(hr, lr, self.crop_size, self.scale, self.use_crop)
93
-
94
- if self.center_crop_hr_size:
95
- hr, lr = center_crop(hr, self.center_crop_hr_size), center_crop(lr, self.center_crop_hr_size // self.scale)
96
-
97
- if self.use_flip:
98
- hr, lr = random_flip(hr, lr)
99
-
100
- if self.use_rot:
101
- hr, lr = random_rotation(hr, lr)
102
-
103
- hr = hr / 255.0
104
- lr = lr / 255.0
105
-
106
- if self.measures is None or np.random.random() < 0.05:
107
- if self.measures is None:
108
- self.measures = {}
109
- self.measures['hr_means'] = np.mean(hr)
110
- self.measures['hr_stds'] = np.std(hr)
111
- self.measures['lr_means'] = np.mean(lr)
112
- self.measures['lr_stds'] = np.std(lr)
113
-
114
- hr = torch.Tensor(hr)
115
- lr = torch.Tensor(lr)
116
-
117
- # if self.gpu:
118
- # hr = hr.cuda()
119
- # lr = lr.cuda()
120
-
121
- return {'LQ': lr, 'GT': hr, 'LQ_path': str(item), 'GT_path': str(item)}
122
-
123
- def print_and_reset(self, tag):
124
- m = self.measures
125
- kvs = []
126
- for k in sorted(m.keys()):
127
- kvs.append("{}={:.2f}".format(k, m[k]))
128
- print("[KPI] " + tag + ": " + ", ".join(kvs))
129
- self.measures = None
130
-
131
-
132
- def random_flip(img, seg):
133
- random_choice = np.random.choice([True, False])
134
- img = img if random_choice else np.flip(img, 2).copy()
135
- seg = seg if random_choice else np.flip(seg, 2).copy()
136
- return img, seg
137
-
138
-
139
- def random_rotation(img, seg):
140
- random_choice = np.random.choice([0, 1, 3])
141
- img = np.rot90(img, random_choice, axes=(1, 2)).copy()
142
- seg = np.rot90(seg, random_choice, axes=(1, 2)).copy()
143
- return img, seg
144
-
145
-
146
- def random_crop(hr, lr, size_hr, scale, random):
147
- size_lr = size_hr // scale
148
-
149
- size_lr_x = lr.shape[1]
150
- size_lr_y = lr.shape[2]
151
-
152
- start_x_lr = np.random.randint(low=0, high=(size_lr_x - size_lr) + 1) if size_lr_x > size_lr else 0
153
- start_y_lr = np.random.randint(low=0, high=(size_lr_y - size_lr) + 1) if size_lr_y > size_lr else 0
154
-
155
- # LR Patch
156
- lr_patch = lr[:, start_x_lr:start_x_lr + size_lr, start_y_lr:start_y_lr + size_lr]
157
-
158
- # HR Patch
159
- start_x_hr = start_x_lr * scale
160
- start_y_hr = start_y_lr * scale
161
- hr_patch = hr[:, start_x_hr:start_x_hr + size_hr, start_y_hr:start_y_hr + size_hr]
162
-
163
- return hr_patch, lr_patch
164
-
165
-
166
- def center_crop(img, size):
167
- assert img.shape[1] == img.shape[2], img.shape
168
- border_double = img.shape[1] - size
169
- assert border_double % 2 == 0, (img.shape, size)
170
- border = border_double // 2
171
- return img[:, border:-border, border:-border]
172
-
173
-
174
- def center_crop_tensor(img, size):
175
- assert img.shape[2] == img.shape[3], img.shape
176
- border_double = img.shape[2] - size
177
- assert border_double % 2 == 0, (img.shape, size)
178
- border = border_double // 2
179
- return img[:, :, border:-border, border:-border]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/data/__init__.py DELETED
@@ -1,51 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- '''create dataset and dataloader'''
18
- import logging
19
- import torch
20
- import torch.utils.data
21
-
22
-
23
- def create_dataloader(dataset, dataset_opt, opt=None, sampler=None):
24
- phase = dataset_opt.get('phase', 'test')
25
- if phase == 'train':
26
- gpu_ids = opt.get('gpu_ids', None)
27
- gpu_ids = gpu_ids if gpu_ids else []
28
- num_workers = dataset_opt['n_workers'] * len(gpu_ids)
29
- batch_size = dataset_opt['batch_size']
30
- shuffle = True
31
- return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle,
32
- num_workers=num_workers, sampler=sampler, drop_last=True,
33
- pin_memory=False)
34
- else:
35
- return torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1,
36
- pin_memory=True)
37
-
38
-
39
- def create_dataset(dataset_opt):
40
- print(dataset_opt)
41
- mode = dataset_opt['mode']
42
- if mode == 'LRHR_PKL':
43
- from data.LRHR_PKL_dataset import LRHR_PKLDataset as D
44
- else:
45
- raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
46
- dataset = D(dataset_opt)
47
-
48
- logger = logging.getLogger('base')
49
- logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__,
50
- dataset_opt['name']))
51
- return dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/demo_on_pretrained.ipynb DELETED
The diff for this file is too large to render. See raw diff
 
models/SRFlow/code/imresize.py DELETED
@@ -1,180 +0,0 @@
1
- # https://github.com/fatheral/matlab_imresize
2
- #
3
- # MIT License
4
- #
5
- # Copyright (c) 2020 Alex
6
- #
7
- # Permission is hereby granted, free of charge, to any person obtaining a copy
8
- # of this software and associated documentation files (the "Software"), to deal
9
- # in the Software without restriction, including without limitation the rights
10
- # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
- # copies of the Software, and to permit persons to whom the Software is
12
- # furnished to do so, subject to the following conditions:
13
- #
14
- # The above copyright notice and this permission notice shall be included in all
15
- # copies or substantial portions of the Software.
16
- #
17
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
- # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
- # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
- # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
- # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
- # SOFTWARE.
24
-
25
-
26
- from __future__ import print_function
27
- import numpy as np
28
- from math import ceil, floor
29
-
30
-
31
- def deriveSizeFromScale(img_shape, scale):
32
- output_shape = []
33
- for k in range(2):
34
- output_shape.append(int(ceil(scale[k] * img_shape[k])))
35
- return output_shape
36
-
37
-
38
- def deriveScaleFromSize(img_shape_in, img_shape_out):
39
- scale = []
40
- for k in range(2):
41
- scale.append(1.0 * img_shape_out[k] / img_shape_in[k])
42
- return scale
43
-
44
-
45
- def triangle(x):
46
- x = np.array(x).astype(np.float64)
47
- lessthanzero = np.logical_and((x >= -1), x < 0)
48
- greaterthanzero = np.logical_and((x <= 1), x >= 0)
49
- f = np.multiply((x + 1), lessthanzero) + np.multiply((1 - x), greaterthanzero)
50
- return f
51
-
52
-
53
- def cubic(x):
54
- x = np.array(x).astype(np.float64)
55
- absx = np.absolute(x)
56
- absx2 = np.multiply(absx, absx)
57
- absx3 = np.multiply(absx2, absx)
58
- f = np.multiply(1.5 * absx3 - 2.5 * absx2 + 1, absx <= 1) + np.multiply(-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2,
59
- (1 < absx) & (absx <= 2))
60
- return f
61
-
62
-
63
- def contributions(in_length, out_length, scale, kernel, k_width):
64
- if scale < 1:
65
- h = lambda x: scale * kernel(scale * x)
66
- kernel_width = 1.0 * k_width / scale
67
- else:
68
- h = kernel
69
- kernel_width = k_width
70
- x = np.arange(1, out_length + 1).astype(np.float64)
71
- u = x / scale + 0.5 * (1 - 1 / scale)
72
- left = np.floor(u - kernel_width / 2)
73
- P = int(ceil(kernel_width)) + 2
74
- ind = np.expand_dims(left, axis=1) + np.arange(P) - 1 # -1 because indexing from 0
75
- indices = ind.astype(np.int32)
76
- weights = h(np.expand_dims(u, axis=1) - indices - 1) # -1 because indexing from 0
77
- weights = np.divide(weights, np.expand_dims(np.sum(weights, axis=1), axis=1))
78
- aux = np.concatenate((np.arange(in_length), np.arange(in_length - 1, -1, step=-1))).astype(np.int32)
79
- indices = aux[np.mod(indices, aux.size)]
80
- ind2store = np.nonzero(np.any(weights, axis=0))
81
- weights = weights[:, ind2store]
82
- indices = indices[:, ind2store]
83
- return weights, indices
84
-
85
-
86
- def imresizemex(inimg, weights, indices, dim):
87
- in_shape = inimg.shape
88
- w_shape = weights.shape
89
- out_shape = list(in_shape)
90
- out_shape[dim] = w_shape[0]
91
- outimg = np.zeros(out_shape)
92
- if dim == 0:
93
- for i_img in range(in_shape[1]):
94
- for i_w in range(w_shape[0]):
95
- w = weights[i_w, :]
96
- ind = indices[i_w, :]
97
- im_slice = inimg[ind, i_img].astype(np.float64)
98
- outimg[i_w, i_img] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
99
- elif dim == 1:
100
- for i_img in range(in_shape[0]):
101
- for i_w in range(w_shape[0]):
102
- w = weights[i_w, :]
103
- ind = indices[i_w, :]
104
- im_slice = inimg[i_img, ind].astype(np.float64)
105
- outimg[i_img, i_w] = np.sum(np.multiply(np.squeeze(im_slice, axis=0), w.T), axis=0)
106
- if inimg.dtype == np.uint8:
107
- outimg = np.clip(outimg, 0, 255)
108
- return np.around(outimg).astype(np.uint8)
109
- else:
110
- return outimg
111
-
112
-
113
- def imresizevec(inimg, weights, indices, dim):
114
- wshape = weights.shape
115
- if dim == 0:
116
- weights = weights.reshape((wshape[0], wshape[2], 1, 1))
117
- outimg = np.sum(weights * ((inimg[indices].squeeze(axis=1)).astype(np.float64)), axis=1)
118
- elif dim == 1:
119
- weights = weights.reshape((1, wshape[0], wshape[2], 1))
120
- outimg = np.sum(weights * ((inimg[:, indices].squeeze(axis=2)).astype(np.float64)), axis=2)
121
- if inimg.dtype == np.uint8:
122
- outimg = np.clip(outimg, 0, 255)
123
- return np.around(outimg).astype(np.uint8)
124
- else:
125
- return outimg
126
-
127
-
128
- def resizeAlongDim(A, dim, weights, indices, mode="vec"):
129
- if mode == "org":
130
- out = imresizemex(A, weights, indices, dim)
131
- else:
132
- out = imresizevec(A, weights, indices, dim)
133
- return out
134
-
135
-
136
- def imresize(I, scalar_scale=None, method='bicubic', output_shape=None, mode="vec"):
137
- if method is 'bicubic':
138
- kernel = cubic
139
- elif method is 'bilinear':
140
- kernel = triangle
141
- else:
142
- print('Error: Unidentified method supplied')
143
-
144
- kernel_width = 4.0
145
- # Fill scale and output_size
146
- if scalar_scale is not None:
147
- scalar_scale = float(scalar_scale)
148
- scale = [scalar_scale, scalar_scale]
149
- output_size = deriveSizeFromScale(I.shape, scale)
150
- elif output_shape is not None:
151
- scale = deriveScaleFromSize(I.shape, output_shape)
152
- output_size = list(output_shape)
153
- else:
154
- print('Error: scalar_scale OR output_shape should be defined!')
155
- return
156
- scale_np = np.array(scale)
157
- order = np.argsort(scale_np)
158
- weights = []
159
- indices = []
160
- for k in range(2):
161
- w, ind = contributions(I.shape[k], output_size[k], scale[k], kernel, kernel_width)
162
- weights.append(w)
163
- indices.append(ind)
164
- B = np.copy(I)
165
- flag2D = False
166
- if B.ndim == 2:
167
- B = np.expand_dims(B, axis=2)
168
- flag2D = True
169
- for k in range(2):
170
- dim = order[k]
171
- B = resizeAlongDim(B, dim, weights[dim], indices[dim], mode)
172
- if flag2D:
173
- B = np.squeeze(B, axis=2)
174
- return B
175
-
176
-
177
- def convertDouble2Byte(I):
178
- B = np.clip(I, 0.0, 1.0)
179
- B = 255 * B
180
- return np.around(B).astype(np.uint8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/prepare_data.py DELETED
@@ -1,118 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import glob
16
- import os
17
- import sys
18
-
19
- import numpy as np
20
- import random
21
- import imageio
22
- import pickle
23
-
24
- from natsort import natsort
25
- from tqdm import tqdm
26
-
27
- def get_img_paths(dir_path, wildcard='*.png'):
28
- return natsort.natsorted(glob.glob(dir_path + '/' + wildcard))
29
-
30
- def create_all_dirs(path):
31
- if "." in path.split("/")[-1]:
32
- dirs = os.path.dirname(path)
33
- else:
34
- dirs = path
35
- os.makedirs(dirs, exist_ok=True)
36
-
37
- def to_pklv4(obj, path, vebose=False):
38
- create_all_dirs(path)
39
- with open(path, 'wb') as f:
40
- pickle.dump(obj, f, protocol=4)
41
- if vebose:
42
- print("Wrote {}".format(path))
43
-
44
-
45
- from imresize import imresize
46
-
47
- def random_crop(img, size):
48
- h, w, c = img.shape
49
-
50
- h_start = np.random.randint(0, h - size)
51
- h_end = h_start + size
52
-
53
- w_start = np.random.randint(0, w - size)
54
- w_end = w_start + size
55
-
56
- return img[h_start:h_end, w_start:w_end]
57
-
58
-
59
- def imread(img_path):
60
- img = imageio.imread(img_path)
61
- if len(img.shape) == 2:
62
- img = np.stack([img, ] * 3, axis=2)
63
- return img
64
-
65
-
66
- def to_pklv4_1pct(obj, path, vebose):
67
- n = int(round(len(obj) * 0.01))
68
- path = path.replace(".", "_1pct.")
69
- to_pklv4(obj[:n], path, vebose=True)
70
-
71
-
72
- def main(dir_path):
73
- hrs = []
74
- lqs = []
75
-
76
- img_paths = get_img_paths(dir_path)
77
- for img_path in tqdm(img_paths):
78
- img = imread(img_path)
79
-
80
- for i in range(47):
81
- crop = random_crop(img, 256)
82
- cropX4 = imresize(crop, scalar_scale=0.25)
83
- hrs.append(crop)
84
- lqs.append(cropX4)
85
-
86
- shuffle_combined(hrs, lqs)
87
-
88
- hrs_path = get_hrs_path(dir_path)
89
- to_pklv4(hrs, hrs_path, vebose=True)
90
-
91
- lqs_path = get_lqs_path(dir_path)
92
- to_pklv4(lqs, lqs_path, vebose=True)
93
-
94
-
95
- def get_hrs_path(dir_path):
96
- base_dir = '/kaggle/working/'
97
- name = os.path.basename(dir_path)
98
- hrs_path = os.path.join(base_dir, 'pkls', name + '.pklv4')
99
- return hrs_path
100
-
101
-
102
- def get_lqs_path(dir_path):
103
- base_dir = '/kaggle/working/'
104
- name = os.path.basename(dir_path)
105
- hrs_path = os.path.join(base_dir, 'pkls', name + '_X4.pklv4')
106
- return hrs_path
107
-
108
-
109
- def shuffle_combined(hrs, lqs):
110
- combined = list(zip(hrs, lqs))
111
- random.shuffle(combined)
112
- hrs[:], lqs[:] = zip(*combined)
113
-
114
-
115
- if __name__ == "__main__":
116
- dir_path = sys.argv[1]
117
- assert os.path.isdir(dir_path)
118
- main(dir_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/test.py DELETED
@@ -1,192 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
-
18
- import glob
19
- import sys
20
- from collections import OrderedDict
21
-
22
- from natsort import natsort
23
-
24
- import options.options as option
25
- from Measure import Measure, psnr
26
- from imresize import imresize
27
- from models import create_model
28
- import torch
29
- from utils.util import opt_get
30
- import numpy as np
31
- import pandas as pd
32
- import os
33
- import cv2
34
-
35
-
36
- def fiFindByWildcard(wildcard):
37
- return natsort.natsorted(glob.glob(wildcard, recursive=True))
38
-
39
-
40
- def load_model(conf_path):
41
- opt = option.parse(conf_path, is_train=False)
42
- opt['gpu_ids'] = None
43
- opt = option.dict_to_nonedict(opt)
44
- model = create_model(opt)
45
-
46
- model_path = opt_get(opt, ['model_path'], None)
47
- model.load_network(load_path=model_path, network=model.netG)
48
- return model, opt
49
-
50
-
51
- def predict(model, lr):
52
- model.feed_data({"LQ": t(lr)}, need_GT=False)
53
- model.test()
54
- visuals = model.get_current_visuals(need_GT=False)
55
- return visuals.get('rlt', visuals.get("SR"))
56
-
57
-
58
- def t(array): return torch.Tensor(np.expand_dims(array.transpose([2, 0, 1]), axis=0).astype(np.float32)) / 255
59
-
60
-
61
- def rgb(t): return (
62
- np.clip((t[0] if len(t.shape) == 4 else t).detach().cpu().numpy().transpose([1, 2, 0]), 0, 1) * 255).astype(
63
- np.uint8)
64
-
65
-
66
- def imread(path):
67
- return cv2.imread(path)[:, :, [2, 1, 0]]
68
-
69
-
70
- def imwrite(path, img):
71
- os.makedirs(os.path.dirname(path), exist_ok=True)
72
- cv2.imwrite(path, img[:, :, [2, 1, 0]])
73
-
74
-
75
- def imCropCenter(img, size):
76
- h, w, c = img.shape
77
-
78
- h_start = max(h // 2 - size // 2, 0)
79
- h_end = min(h_start + size, h)
80
-
81
- w_start = max(w // 2 - size // 2, 0)
82
- w_end = min(w_start + size, w)
83
-
84
- return img[h_start:h_end, w_start:w_end]
85
-
86
-
87
- def impad(img, top=0, bottom=0, left=0, right=0, color=255):
88
- return np.pad(img, [(top, bottom), (left, right), (0, 0)], 'reflect')
89
-
90
-
91
- def main():
92
- conf_path = sys.argv[1]
93
- conf = conf_path.split('/')[-1].replace('.yml', '')
94
- model, opt = load_model(conf_path)
95
-
96
- data_dir = opt['dataroot']
97
-
98
- # this_dir = os.path.dirname(os.path.realpath(__file__))
99
- test_dir = os.path.join('/kaggle/working/', 'results', conf)
100
- print(f"Out dir: {test_dir}")
101
-
102
- measure = Measure(use_gpu=False)
103
-
104
- fname = f'measure_full.csv'
105
- fname_tmp = fname + "_"
106
- path_out_measures = os.path.join(test_dir, fname_tmp)
107
- path_out_measures_final = os.path.join(test_dir, fname)
108
-
109
- if os.path.isfile(path_out_measures_final):
110
- df = pd.read_csv(path_out_measures_final)
111
- elif os.path.isfile(path_out_measures):
112
- df = pd.read_csv(path_out_measures)
113
- else:
114
- df = None
115
-
116
- scale = opt['scale']
117
-
118
- pad_factor = 2
119
-
120
- data_sets = [
121
- 'Set5',
122
- 'Set14',
123
- 'Urban100',
124
- 'BSD100'
125
- ]
126
-
127
- final_df = pd.DataFrame()
128
-
129
- for data_set in data_sets:
130
- lr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*LR.png'))
131
- hr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*HR.png'))
132
-
133
- df = pd.DataFrame(columns=['conf', 'heat', 'data_set', 'name', 'PSNR', 'SSIM', 'LPIPS', 'LRC PSNR'])
134
-
135
- for lr_path, hr_path, idx_test in zip(lr_paths, hr_paths, range(len(lr_paths))):
136
- with torch.no_grad(), torch.cuda.amp.autocast():
137
- lr = imread(lr_path)
138
- hr = imread(hr_path)
139
-
140
- # Pad image to be % 2
141
- h, w, c = lr.shape
142
- lq_orig = lr.copy()
143
- lr = impad(lr, bottom=int(np.ceil(h / pad_factor) * pad_factor - h),
144
- right=int(np.ceil(w / pad_factor) * pad_factor - w))
145
-
146
- lr_t = t(lr)
147
-
148
- heat = opt['heat']
149
-
150
- if df is not None and len(df[(df['heat'] == heat) & (df['name'] == idx_test)]) == 1:
151
- continue
152
-
153
- sr_t = model.get_sr(lq=lr_t, heat=heat)
154
-
155
- sr = rgb(torch.clamp(sr_t, 0, 1))
156
- sr = sr[:h * scale, :w * scale]
157
-
158
- path_out_sr = os.path.join(test_dir, data_set, "{:0.2f}".format(heat).replace('.', ''), "{:06d}.png".format(idx_test))
159
- imwrite(path_out_sr, sr)
160
-
161
- meas = OrderedDict(conf=conf, heat=heat, data_set=data_set, name=idx_test)
162
- meas['PSNR'], meas['SSIM'], meas['LPIPS'] = measure.measure(sr, hr)
163
-
164
- lr_reconstruct_rgb = imresize(sr, 1 / opt['scale'])
165
- meas['LRC PSNR'] = psnr(lq_orig, lr_reconstruct_rgb)
166
-
167
- str_out = format_measurements(meas)
168
- print(str_out)
169
-
170
- df = df._append(pd.DataFrame([meas]), ignore_index=True)
171
-
172
- final_df = pd.concat([final_df, df])
173
-
174
- final_df.to_csv(path_out_measures, index=False)
175
- os.rename(path_out_measures, path_out_measures_final)
176
-
177
- # str_out = format_measurements(df.mean())
178
- # print(f"Results in: {path_out_measures_final}")
179
- # print('Mean: ' + str_out)
180
-
181
-
182
- def format_measurements(meas):
183
- s_out = []
184
- for k, v in meas.items():
185
- v = f"{v:0.2f}" if isinstance(v, float) else v
186
- s_out.append(f"{k}: {v}")
187
- str_out = ", ".join(s_out)
188
- return str_out
189
-
190
-
191
- if __name__ == "__main__":
192
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models/SRFlow/code/train.py DELETED
@@ -1,328 +0,0 @@
1
- # Copyright (c) 2020 Huawei Technologies Co., Ltd.
2
- # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
3
- # you may not use this file except in compliance with the License.
4
- # You may obtain a copy of the License at
5
- #
6
- # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
7
- #
8
- # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- #
15
- # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE
16
-
17
- import os
18
- from os.path import basename
19
- import math
20
- import argparse
21
- import random
22
- import logging
23
- import cv2
24
-
25
- import torch
26
- import torch.distributed as dist
27
- import torch.multiprocessing as mp
28
-
29
- import options.options as option
30
- from utils import util
31
- from data import create_dataloader, create_dataset
32
- from models import create_model
33
- from utils.timer import Timer, TickTock
34
- from utils.util import get_resume_paths
35
-
36
- import wandb
37
-
38
- def getEnv(name): import os; return True if name in os.environ.keys() else False
39
-
40
-
41
- def init_dist(backend='nccl', **kwargs):
42
- ''' initialization for distributed training'''
43
- # if mp.get_start_method(allow_none=True) is None:
44
- if mp.get_start_method(allow_none=True) != 'spawn':
45
- mp.set_start_method('spawn')
46
- rank = int(os.environ['RANK'])
47
- num_gpus = torch.cuda.device_count()
48
- torch.cuda.set_deviceDistIterSampler(rank % num_gpus)
49
- dist.init_process_group(backend=backend, **kwargs)
50
-
51
-
52
- def main():
53
- wandb.init(project='srflow')
54
- #### options
55
- parser = argparse.ArgumentParser()
56
- parser.add_argument('-opt', type=str, help='Path to option YMAL file.')
57
- parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
58
- help='job launcher')
59
- parser.add_argument('--local_rank', type=int, default=0)
60
- args = parser.parse_args()
61
- opt = option.parse(args.opt, is_train=True)
62
-
63
- #### distributed training settings
64
- opt['dist'] = False
65
- rank = -1
66
- print('Disabled distributed training.')
67
-
68
- #### loading resume state if exists
69
- if opt['path'].get('resume_state', None):
70
- resume_state_path, _ = get_resume_paths(opt)
71
-
72
- # distributed resuming: all load into default GPU
73
- if resume_state_path is None:
74
- resume_state = None
75
- else:
76
- device_id = torch.cuda.current_device()
77
- resume_state = torch.load(resume_state_path,
78
- map_location=lambda storage, loc: storage.cuda(device_id))
79
- option.check_resume(opt, resume_state['iter']) # check resume options
80
- else:
81
- resume_state = None
82
-
83
- #### mkdir and loggers
84
- if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
85
- if resume_state is None:
86
- util.mkdir_and_rename(
87
- opt['path']['experiments_root']) # rename experiment folder if exists
88
- util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
89
- and 'pretrain_model' not in key and 'resume' not in key))
90
-
91
- # config loggers. Before it, the log will not work
92
- util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
93
- screen=True, tofile=True)
94
- util.setup_logger('val', opt['path']['log'], 'val_' + opt['name'], level=logging.INFO,
95
- screen=True, tofile=True)
96
- logger = logging.getLogger('base')
97
- logger.info(option.dict2str(opt))
98
-
99
- # tensorboard logger
100
- if opt.get('use_tb_logger', False) and 'debug' not in opt['name']:
101
- version = float(torch.__version__[0:3])
102
- if version >= 1.1: # PyTorch 1.1
103
- from torch.utils.tensorboard import SummaryWriter
104
- else:
105
- logger.info(
106
- 'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
107
- from tensorboardX import SummaryWriter
108
- conf_name = basename(args.opt).replace(".yml", "")
109
- exp_dir = opt['path']['experiments_root']
110
- log_dir_train = os.path.join(exp_dir, 'tb', conf_name, 'train')
111
- log_dir_valid = os.path.join(exp_dir, 'tb', conf_name, 'valid')
112
- tb_logger_train = SummaryWriter(log_dir=log_dir_train)
113
- tb_logger_valid = SummaryWriter(log_dir=log_dir_valid)
114
- else:
115
- util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
116
- logger = logging.getLogger('base')
117
-
118
- # convert to NoneDict, which returns None for missing keys
119
- opt = option.dict_to_nonedict(opt)
120
-
121
- #### random seed
122
- seed = opt['train']['manual_seed']
123
- if seed is None:
124
- seed = random.randint(1, 10000)
125
- if rank <= 0:
126
- logger.info('Random seed: {}'.format(seed))
127
- util.set_random_seed(seed)
128
-
129
- torch.backends.cudnn.benchmark = True
130
- # torch.backends.cudnn.deterministic = True
131
-
132
- #### create train and val dataloader
133
- dataset_ratio = 200 # enlarge the size of each epoch
134
- for phase, dataset_opt in opt['datasets'].items():
135
- if phase == 'train':
136
- full_dataset = create_dataset(dataset_opt)
137
- print('Dataset created')
138
- train_len = int(len(full_dataset) * 0.95)
139
- val_len = len(full_dataset) - train_len
140
- train_set, val_set = torch.utils.data.random_split(full_dataset, [train_len, val_len])
141
- train_size = int(math.ceil(train_len / dataset_opt['batch_size']))
142
- total_iters = int(opt['train']['niter'])
143
- total_epochs = int(math.ceil(total_iters / train_size))
144
- train_sampler = None
145
- train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
146
- if rank <= 0:
147
- logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
148
- len(train_set), train_size))
149
- logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
150
- total_epochs, total_iters))
151
- val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=1,
152
- pin_memory=True)
153
- elif phase == 'val':
154
- continue
155
- else:
156
- raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
157
- assert train_loader is not None
158
-
159
- #### create model
160
- current_step = 0 if resume_state is None else resume_state['iter']
161
- model = create_model(opt, current_step)
162
-
163
- #### resume training
164
- if resume_state:
165
- logger.info('Resuming training from epoch: {}, iter: {}.'.format(
166
- resume_state['epoch'], resume_state['iter']))
167
-
168
- start_epoch = resume_state['epoch']
169
- current_step = resume_state['iter']
170
- model.resume_training(resume_state) # handle optimizers and schedulers
171
- else:
172
- current_step = 0
173
- start_epoch = 0
174
-
175
- #### training
176
- timer = Timer()
177
- logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
178
- timerData = TickTock()
179
-
180
- for epoch in range(start_epoch, total_epochs + 1):
181
- if opt['dist']:
182
- train_sampler.set_epoch(epoch)
183
-
184
- timerData.tick()
185
- for _, train_data in enumerate(train_loader):
186
- timerData.tock()
187
- current_step += 1
188
- if current_step > total_iters:
189
- break
190
-
191
- #### training
192
- model.feed_data(train_data)
193
-
194
- #### update learning rate
195
- model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
196
-
197
- try:
198
- nll = model.optimize_parameters(current_step)
199
- except RuntimeError as e:
200
- print("Skipping ERROR caught in nll = model.optimize_parameters(current_step): ")
201
- print(e)
202
-
203
- if nll is None:
204
- nll = 0
205
-
206
- wandb.log({"loss": nll})
207
- #### log
208
- def eta(t_iter):
209
- return (t_iter * (opt['train']['niter'] - current_step)) / 3600
210
-
211
- if current_step % opt['logger']['print_freq'] == 0 \
212
- or current_step - (resume_state['iter'] if resume_state else 0) < 25:
213
- avg_time = timer.get_average_and_reset()
214
- avg_data_time = timerData.get_average_and_reset()
215
- message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}, t:{:.2e}, td:{:.2e}, eta:{:.2e}, nll:{:.3e}> '.format(
216
- epoch, current_step, model.get_current_learning_rate(), avg_time, avg_data_time,
217
- eta(avg_time), nll)
218
- print(message)
219
- timer.tick()
220
- # Reduce number of logs
221
- if current_step % 5 == 0:
222
- tb_logger_train.add_scalar('loss/nll', nll, current_step)
223
- tb_logger_train.add_scalar('lr/base', model.get_current_learning_rate(), current_step)
224
- tb_logger_train.add_scalar('time/iteration', timer.get_last_iteration(), current_step)
225
- tb_logger_train.add_scalar('time/data', timerData.get_last_iteration(), current_step)
226
- tb_logger_train.add_scalar('time/eta', eta(timer.get_last_iteration()), current_step)
227
- for k, v in model.get_current_log().items():
228
- tb_logger_train.add_scalar(k, v, current_step)
229
-
230
- # validation
231
- if current_step % opt['train']['val_freq'] == 0 and rank <= 0:
232
- avg_psnr = 0.0
233
- idx = 0
234
- nlls = []
235
- for val_data in val_loader:
236
- idx += 1
237
- img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][0]))[0]
238
- img_dir = os.path.join(opt['path']['val_images'], img_name)
239
- util.mkdir(img_dir)
240
-
241
- model.feed_data(val_data)
242
-
243
- nll = model.test()
244
- if nll is None:
245
- nll = 0
246
- nlls.append(nll)
247
-
248
- visuals = model.get_current_visuals()
249
-
250
- sr_img = None
251
- # Save SR images for reference
252
- if hasattr(model, 'heats'):
253
- for heat in model.heats:
254
- for i in range(model.n_sample):
255
- sr_img = util.tensor2img(visuals['SR', heat, i]) # uint8
256
- save_img_path = os.path.join(img_dir,
257
- '{:s}_{:09d}_h{:03d}_s{:d}.png'.format(img_name,
258
- current_step,
259
- int(heat * 100), i))
260
- util.save_img(sr_img, save_img_path)
261
- else:
262
- sr_img = util.tensor2img(visuals['SR']) # uint8
263
- save_img_path = os.path.join(img_dir,
264
- '{:s}_{:d}.png'.format(img_name, current_step))
265
- util.save_img(sr_img, save_img_path)
266
- assert sr_img is not None
267
-
268
- # Save LQ images for reference
269
- save_img_path_lq = os.path.join(img_dir,
270
- '{:s}_LQ.png'.format(img_name))
271
- if not os.path.isfile(save_img_path_lq):
272
- lq_img = util.tensor2img(visuals['LQ']) # uint8
273
- util.save_img(
274
- cv2.resize(lq_img, dsize=None, fx=opt['scale'], fy=opt['scale'],
275
- interpolation=cv2.INTER_NEAREST),
276
- save_img_path_lq)
277
-
278
- # Save GT images for reference
279
- gt_img = util.tensor2img(visuals['GT']) # uint8
280
- save_img_path_gt = os.path.join(img_dir,
281
- '{:s}_GT.png'.format(img_name))
282
- if not os.path.isfile(save_img_path_gt):
283
- util.save_img(gt_img, save_img_path_gt)
284
-
285
- # calculate PSNR
286
- crop_size = opt['scale']
287
- gt_img = gt_img / 255.
288
- sr_img = sr_img / 255.
289
- cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :]
290
- cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :]
291
- avg_psnr += util.calculate_psnr(cropped_sr_img * 255, cropped_gt_img * 255)
292
-
293
- avg_psnr = avg_psnr / idx
294
- avg_nll = sum(nlls) / len(nlls)
295
-
296
- # log
297
- logger.info('# Validation # PSNR: {:.4e}'.format(avg_psnr))
298
- logger_val = logging.getLogger('val') # validation logger
299
- logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr: {:.4e}'.format(
300
- epoch, current_step, avg_psnr))
301
-
302
- # tensorboard logger
303
- tb_logger_valid.add_scalar('loss/psnr', avg_psnr, current_step)
304
- tb_logger_valid.add_scalar('loss/nll', avg_nll, current_step)
305
-
306
- tb_logger_train.flush()
307
- tb_logger_valid.flush()
308
-
309
- #### save models and training states
310
- if current_step % opt['logger']['save_checkpoint_freq'] == 0:
311
- if rank <= 0:
312
- logger.info('Saving models and training states.')
313
- model.save(current_step)
314
- model.save_training_state(epoch, current_step)
315
-
316
- timerData.tick()
317
-
318
- with open(os.path.join(opt['path']['root'], "TRAIN_DONE"), 'w') as f:
319
- f.write("TRAIN_DONE")
320
-
321
- if rank <= 0:
322
- logger.info('Saving the final model.')
323
- model.save('latest')
324
- logger.info('End of training.')
325
-
326
-
327
- if __name__ == '__main__':
328
- main()