thundax's picture
Upload 3 files
493a46e verified
raw
history blame
1.56 kB
import json
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "thundax/Qwen2-1.5B-Sign"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map=device)
with open("text2sign.json", 'r', encoding='utf-8') as f:
text2sign_dict = json.load(f)
def do_predict(text):
input_text = f'Translate sentence into labels\n{text}\n'
model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
signs = response_text.split(' ')
actions = {x: text2sign_dict[x] or '' for x in signs}
return json.dumps({'text': response_text, 'actions': actions}, ensure_ascii=False, indent=4)
def run():
with gr.Blocks(title="Qwen2-1.5B-Sign") as app:
gr.HTML("<h1><center>Qwen2-1.5B-Sign</center></h1>")
input_text = gr.TextArea(label="Input", lines=2, value="你好,世界!")
submit_btn = gr.Button('Submit')
output_text = gr.TextArea(label="Output", lines=20)
submit_btn.click(do_predict, inputs=[input_text], outputs=[output_text])
app.launch()
if __name__ == "__main__":
run()