Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
from threading import Thread | |
MODEL = "tiiuae/Falcon3-7B-Instruct-1.58bit" | |
TITLE = "<h1><center>Falcon3-1.58bit-instruct playground</center></h1>" | |
SUB_TITLE = """<center>This interface has been created for quick validation purposes, do not use it for production.</center>""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
""" | |
END_MESSAGE = """ | |
\n | |
**The conversation has reached to its end, please press "Clear" to restart a new conversation** | |
""" | |
device = "cuda" # for GPU usage or "cpu" for CPU usage | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.bfloat16, | |
).to(device) | |
model = torch.compile(model) | |
def stream_chat( | |
message: str, | |
history: list, | |
temperature: float = 0.3, | |
max_new_tokens: int = 128, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
penalty: float = 1.2, | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt = True) | |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens = max_new_tokens, | |
do_sample = False if temperature == 0 else True, | |
top_p = top_p, | |
top_k = top_k, | |
temperature = temperature, | |
streamer=streamer, | |
pad_token_id = 10, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
print(f'response: {buffer}') | |
chatbot = gr.Chatbot(height=600) | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.HTML(SUB_TITLE) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.3, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=128, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
examples=[ | |
["Hello there, can you suggest few places to visit in UAE?"], | |
["What UAE is known for?"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |