|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def conv_bn(inp, oup, stride=1, leaky=0): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), |
|
nn.LeakyReLU(negative_slope=leaky, inplace=True)) |
|
|
|
|
|
def conv_bn_no_relu(inp, oup, stride): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 3, stride, 1, bias=False), |
|
nn.BatchNorm2d(oup), |
|
) |
|
|
|
|
|
def conv_bn1X1(inp, oup, stride, leaky=0): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup), |
|
nn.LeakyReLU(negative_slope=leaky, inplace=True)) |
|
|
|
|
|
def conv_dw(inp, oup, stride, leaky=0.1): |
|
return nn.Sequential( |
|
nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False), |
|
nn.BatchNorm2d(inp), |
|
nn.LeakyReLU(negative_slope=leaky, inplace=True), |
|
nn.Conv2d(inp, oup, 1, 1, 0, bias=False), |
|
nn.BatchNorm2d(oup), |
|
nn.LeakyReLU(negative_slope=leaky, inplace=True), |
|
) |
|
|
|
|
|
class SSH(nn.Module): |
|
|
|
def __init__(self, in_channel, out_channel): |
|
super(SSH, self).__init__() |
|
assert out_channel % 4 == 0 |
|
leaky = 0 |
|
if (out_channel <= 64): |
|
leaky = 0.1 |
|
self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1) |
|
|
|
self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky) |
|
self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) |
|
|
|
self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky) |
|
self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) |
|
|
|
def forward(self, input): |
|
conv3X3 = self.conv3X3(input) |
|
|
|
conv5X5_1 = self.conv5X5_1(input) |
|
conv5X5 = self.conv5X5_2(conv5X5_1) |
|
|
|
conv7X7_2 = self.conv7X7_2(conv5X5_1) |
|
conv7X7 = self.conv7x7_3(conv7X7_2) |
|
|
|
out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class FPN(nn.Module): |
|
|
|
def __init__(self, in_channels_list, out_channels): |
|
super(FPN, self).__init__() |
|
leaky = 0 |
|
if (out_channels <= 64): |
|
leaky = 0.1 |
|
self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky) |
|
self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky) |
|
self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky) |
|
|
|
self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky) |
|
self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky) |
|
|
|
def forward(self, input): |
|
|
|
|
|
|
|
output1 = self.output1(input[0]) |
|
output2 = self.output2(input[1]) |
|
output3 = self.output3(input[2]) |
|
|
|
up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest') |
|
output2 = output2 + up3 |
|
output2 = self.merge2(output2) |
|
|
|
up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest') |
|
output1 = output1 + up2 |
|
output1 = self.merge1(output1) |
|
|
|
out = [output1, output2, output3] |
|
return out |
|
|
|
|
|
class MobileNetV1(nn.Module): |
|
|
|
def __init__(self): |
|
super(MobileNetV1, self).__init__() |
|
self.stage1 = nn.Sequential( |
|
conv_bn(3, 8, 2, leaky=0.1), |
|
conv_dw(8, 16, 1), |
|
conv_dw(16, 32, 2), |
|
conv_dw(32, 32, 1), |
|
conv_dw(32, 64, 2), |
|
conv_dw(64, 64, 1), |
|
) |
|
self.stage2 = nn.Sequential( |
|
conv_dw(64, 128, 2), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
conv_dw(128, 128, 1), |
|
) |
|
self.stage3 = nn.Sequential( |
|
conv_dw(128, 256, 2), |
|
conv_dw(256, 256, 1), |
|
) |
|
self.avg = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(256, 1000) |
|
|
|
def forward(self, x): |
|
x = self.stage1(x) |
|
x = self.stage2(x) |
|
x = self.stage3(x) |
|
x = self.avg(x) |
|
|
|
x = x.view(-1, 256) |
|
x = self.fc(x) |
|
return x |
|
|
|
|
|
class ClassHead(nn.Module): |
|
|
|
def __init__(self, inchannels=512, num_anchors=3): |
|
super(ClassHead, self).__init__() |
|
self.num_anchors = num_anchors |
|
self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
out = self.conv1x1(x) |
|
out = out.permute(0, 2, 3, 1).contiguous() |
|
|
|
return out.view(out.shape[0], -1, 2) |
|
|
|
|
|
class BboxHead(nn.Module): |
|
|
|
def __init__(self, inchannels=512, num_anchors=3): |
|
super(BboxHead, self).__init__() |
|
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
out = self.conv1x1(x) |
|
out = out.permute(0, 2, 3, 1).contiguous() |
|
|
|
return out.view(out.shape[0], -1, 4) |
|
|
|
|
|
class LandmarkHead(nn.Module): |
|
|
|
def __init__(self, inchannels=512, num_anchors=3): |
|
super(LandmarkHead, self).__init__() |
|
self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0) |
|
|
|
def forward(self, x): |
|
out = self.conv1x1(x) |
|
out = out.permute(0, 2, 3, 1).contiguous() |
|
|
|
return out.view(out.shape[0], -1, 10) |
|
|
|
|
|
def make_class_head(fpn_num=3, inchannels=64, anchor_num=2): |
|
classhead = nn.ModuleList() |
|
for i in range(fpn_num): |
|
classhead.append(ClassHead(inchannels, anchor_num)) |
|
return classhead |
|
|
|
|
|
def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2): |
|
bboxhead = nn.ModuleList() |
|
for i in range(fpn_num): |
|
bboxhead.append(BboxHead(inchannels, anchor_num)) |
|
return bboxhead |
|
|
|
|
|
def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2): |
|
landmarkhead = nn.ModuleList() |
|
for i in range(fpn_num): |
|
landmarkhead.append(LandmarkHead(inchannels, anchor_num)) |
|
return landmarkhead |
|
|