|
import os |
|
import torch |
|
import ldm_patched.modules.model_management as model_management |
|
|
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
from modules.model_loader import load_file_from_url |
|
from modules.config import path_clip_vision |
|
from ldm_patched.modules.model_patcher import ModelPatcher |
|
from extras.BLIP.models.blip import blip_decoder |
|
|
|
|
|
blip_image_eval_size = 384 |
|
blip_repo_root = os.path.join(os.path.dirname(__file__), 'BLIP') |
|
|
|
|
|
class Interrogator: |
|
def __init__(self): |
|
self.blip_model = None |
|
self.load_device = torch.device('cpu') |
|
self.offload_device = torch.device('cpu') |
|
self.dtype = torch.float32 |
|
|
|
@torch.no_grad() |
|
@torch.inference_mode() |
|
def interrogate(self, img_rgb): |
|
if self.blip_model is None: |
|
filename = load_file_from_url( |
|
url='https://huggingface.co/lllyasviel/misc/resolve/main/model_base_caption_capfilt_large.pth', |
|
model_dir=path_clip_vision, |
|
file_name='model_base_caption_capfilt_large.pth', |
|
) |
|
|
|
model = blip_decoder(pretrained=filename, image_size=blip_image_eval_size, vit='base', |
|
med_config=os.path.join(blip_repo_root, "configs", "med_config.json")) |
|
model.eval() |
|
|
|
self.load_device = model_management.text_encoder_device() |
|
self.offload_device = model_management.text_encoder_offload_device() |
|
self.dtype = torch.float32 |
|
|
|
model.to(self.offload_device) |
|
|
|
if model_management.should_use_fp16(device=self.load_device): |
|
model.half() |
|
self.dtype = torch.float16 |
|
|
|
self.blip_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) |
|
|
|
model_management.load_model_gpu(self.blip_model) |
|
|
|
gpu_image = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
])(img_rgb).unsqueeze(0).to(device=self.load_device, dtype=self.dtype) |
|
|
|
caption = self.blip_model.model.generate(gpu_image, sample=True, num_beams=1, max_length=75)[0] |
|
|
|
return caption |
|
|
|
|
|
default_interrogator = Interrogator().interrogate |
|
|