tivnanmatt commited on
Commit
7b1ccbd
·
1 Parent(s): 7bc83e9

working version

Browse files
Files changed (4) hide show
  1. .gitignore +1 -0
  2. app.py +68 -26
  3. gmm.py +1 -1
  4. utils.py +20 -25
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__
app.py CHANGED
@@ -1,42 +1,84 @@
1
  # app.py
2
 
3
  import gradio as gr
4
- from utils import initialize_gmm, generate_grid, generate_contours, generate_intermediate_points, plot_samples_and_contours, create_animation
5
  import matplotlib.pyplot as plt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  def visualize_gmm(mu_list, Sigma_list, pi_list, dx, dtheta, T, N):
8
- gmm = initialize_gmm(mu_list, Sigma_list, pi_list)
9
- grid_points = generate_grid(dx)
10
- std_normal_contours = generate_contours(dtheta)
11
- gmm_samples = gmm.sample(500)
12
- intermediate_points = generate_intermediate_points(gmm, grid_points, std_normal_contours, gmm_samples, T, N)
13
-
14
- fig1, ax1 = plot_samples_and_contours(gmm_samples, std_normal_contours, grid_points, "GMM Samples and Contours")
15
- fig2, ax2 = plot_samples_and_contours(gmm_samples, std_normal_contours, grid_points, "Standard Normal Samples and Contours")
16
-
17
- anim1 = create_animation(fig1, ax1, N, *intermediate_points[:3])
18
- anim2 = create_animation(fig2, ax2, N, *intermediate_points[3:])
19
-
20
- return fig1, fig2, anim1.to_jshtml(), anim2.to_jshtml()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  demo = gr.Interface(
23
  fn=visualize_gmm,
24
  inputs=[
25
- gr.Textbox(label="Mu List", placeholder="Enter means as a list of lists, e.g., [[0,0], [1,1]]"),
26
- gr.Textbox(label="Sigma List", placeholder="Enter covariances as a list of lists, e.g., [[[0.2, 0.1], [0.1, 0.3]], [[1.0, -0.1], [-0.1, 0.1]]]"),
27
- gr.Textbox(label="Pi List", placeholder="Enter weights as a list, e.g., [0.5, 0.5]"),
28
- gr.Slider(minimum=0.01, maximum=1.0, label="dx", default=0.1),
29
- gr.Slider(minimum=0.01, maximum=0.1, label="dtheta", default=0.01),
30
- gr.Slider(minimum=1, maximum=100, label="T", default=10),
31
- gr.Slider(minimum=1, maximum=500, label="N", default=100)
32
  ],
33
  outputs=[
34
- gr.Plot(label="GMM to Normal Flow"),
35
- gr.Plot(label="Normal to GMM Flow"),
36
- gr.HTML(label="GMM to Normal Animation"),
37
- gr.HTML(label="Normal to GMM Animation")
38
  ],
39
  live=True
40
  )
41
 
42
- demo.launch()
 
1
  # app.py
2
 
3
  import gradio as gr
4
+ from utils import initialize_gmm, generate_grid, generate_contours, generate_intermediate_points, plot_samples_and_contours
5
  import matplotlib.pyplot as plt
6
+ import torch
7
+ import numpy as np
8
+
9
+ def validate_inputs(mu_list, Sigma_list, pi_list):
10
+ try:
11
+ mu = eval(mu_list)
12
+ Sigma = eval(Sigma_list)
13
+ pi = eval(pi_list)
14
+
15
+ if not (isinstance(mu, list) and all(isinstance(i, list) for i in mu)):
16
+ return False, "Mu list is invalid."
17
+ if not (isinstance(Sigma, list) and all(isinstance(i, list) for i in Sigma)):
18
+ return False, "Sigma list is invalid."
19
+ if not isinstance(pi, list):
20
+ return False, "Pi list is invalid."
21
+
22
+ if not torch.isclose(torch.tensor(pi).sum(), torch.tensor(1.0)):
23
+ return False, "Mixture weights must sum to 1."
24
+
25
+ return True, ""
26
+ except Exception as e:
27
+ return False, str(e)
28
 
29
  def visualize_gmm(mu_list, Sigma_list, pi_list, dx, dtheta, T, N):
30
+ is_valid, error_message = validate_inputs(mu_list, Sigma_list, pi_list)
31
+ if not is_valid:
32
+ fig, ax = plt.subplots()
33
+ ax.text(0.5, 0.5, f'Invalid input: {error_message}', horizontalalignment='center', verticalalignment='center')
34
+ ax.set_xlim(-5, 5)
35
+ ax.set_ylim(-5, 5)
36
+ ax.set_aspect('equal', adjustable='box')
37
+ plt.close(fig)
38
+ return fig, fig
39
+
40
+ try:
41
+ gmm = initialize_gmm(eval(mu_list), eval(Sigma_list), eval(pi_list))
42
+ grid_points = generate_grid(dx)
43
+ std_normal_contours = generate_contours(dtheta)
44
+ gmm_samples = gmm.sample(500)
45
+ normal_samples = torch.distributions.MultivariateNormal(torch.zeros(2), torch.eye(2)).sample((500,))
46
+ (intermediate_points_gmm_to_normal, contour_intermediate_points_gmm_to_normal, grid_intermediate_points_gmm_to_normal,
47
+ intermediate_points_normal_to_gmm, contour_intermediate_points_normal_to_gmm, grid_intermediate_points_normal_to_gmm) = \
48
+ generate_intermediate_points(gmm, grid_points, std_normal_contours, gmm_samples, normal_samples, T, N)
49
+
50
+ final_frame_gmm_to_normal = intermediate_points_gmm_to_normal.cpu().detach().numpy()
51
+ final_frame_normal_to_gmm = intermediate_points_normal_to_gmm.cpu().detach().numpy()
52
+
53
+ fig1, ax1 = plot_samples_and_contours(final_frame_gmm_to_normal, contour_intermediate_points_gmm_to_normal.cpu().detach().numpy(), grid_intermediate_points_gmm_to_normal.cpu().detach().numpy(), "GMM to Normal Final Frame")
54
+ fig2, ax2 = plot_samples_and_contours(final_frame_normal_to_gmm, contour_intermediate_points_normal_to_gmm.cpu().detach().numpy(), grid_intermediate_points_normal_to_gmm.cpu().detach().numpy(), "Normal to GMM Final Frame")
55
+
56
+ return fig1, fig2
57
+ except Exception as e:
58
+ fig, ax = plt.subplots()
59
+ ax.text(0.5, 0.5, f'Error during visualization: {str(e)}', horizontalalignment='center', verticalalignment='center')
60
+ ax.set_xlim(-5, 5)
61
+ ax.set_ylim(-5, 5)
62
+ ax.set_aspect('equal', adjustable='box')
63
+ plt.close(fig)
64
+ return fig, fig
65
 
66
  demo = gr.Interface(
67
  fn=visualize_gmm,
68
  inputs=[
69
+ gr.Textbox(label="Mu List", value="[[2, 1], [-1, -2], [3, -2]]", placeholder="Enter means as a list of lists, e.g., [[0,0], [1,1]]"),
70
+ gr.Textbox(label="Sigma List", value="[[[0.2, 0.1], [0.1, 0.3]], [[1.0, -0.1], [-0.1, 0.1]], [[0.05, 0.0], [0.0, 0.05]]]", placeholder="Enter covariances as a list of lists, e.g., [[[0.2, 0.1], [0.1, 0.3]], [[1.0, -0.1], [-0.1, 0.1]]]"),
71
+ gr.Textbox(label="Pi List", value="[0.05, 0.8, 0.15]", placeholder="Enter weights as a list, e.g., [0.5, 0.5]"),
72
+ gr.Slider(minimum=0.01, maximum=1.0, label="dx", value=0.1),
73
+ gr.Slider(minimum=2*np.pi/3600, maximum=2*np.pi/36, label="dtheta", value=2*np.pi/360),
74
+ gr.Slider(minimum=1, maximum=100, label="T", value=10),
75
+ gr.Slider(minimum=1, maximum=500, label="N", value=100)
76
  ],
77
  outputs=[
78
+ gr.Plot(label="GMM to Normal Flow Final Frame"),
79
+ gr.Plot(label="Normal to GMM Flow Final Frame")
 
 
80
  ],
81
  live=True
82
  )
83
 
84
+ demo.launch()
gmm.py CHANGED
@@ -42,7 +42,7 @@ class GaussianMixtureModel:
42
  samples = []
43
  for _ in range(n_samples):
44
  # Choose a component based on mixture weights
45
- k = torch.multinomial(self.pi.squeeze(), 1).item()
46
  sample = torch.distributions.MultivariateNormal(self.mu[k].squeeze(), self.Sigma[k]).sample()
47
  samples.append(sample)
48
  return torch.stack(samples)
 
42
  samples = []
43
  for _ in range(n_samples):
44
  # Choose a component based on mixture weights
45
+ k = torch.multinomial(self.pi.reshape(self.pi.shape[0]), 1).item()
46
  sample = torch.distributions.MultivariateNormal(self.mu[k].squeeze(), self.Sigma[k]).sample()
47
  samples.append(sample)
48
  return torch.stack(samples)
utils.py CHANGED
@@ -3,7 +3,6 @@
3
  import torch
4
  import numpy as np
5
  import matplotlib.pyplot as plt
6
- from matplotlib.animation import FuncAnimation
7
  from gmm import GaussianMixtureModel
8
 
9
  def initialize_gmm(mu_list, Sigma_list, pi_list):
@@ -15,8 +14,10 @@ def initialize_gmm(mu_list, Sigma_list, pi_list):
15
  def generate_grid(dx):
16
  x_positions = np.arange(-10, 10.5, 0.5)
17
  y_positions = np.arange(-10, 10.5, 0.5)
18
- vertical_lines = [np.stack([np.full(int((10 - (-10))/ dx + 1), x), np.arange(-10, 10 + dx, dx)], axis=1) for x in x_positions]
19
- horizontal_lines = [np.stack([np.arange(-10, 10 + dx, dx), np.full(int((10 - (-10)) / dx + 1), y)], axis=1) for y in y_positions]
 
 
20
  grid_points = np.concatenate(vertical_lines + horizontal_lines, axis=0)
21
  return torch.tensor(grid_points, dtype=torch.float32)
22
 
@@ -25,14 +26,22 @@ def generate_contours(dtheta):
25
  std_normal_contours = np.concatenate([np.stack([r * np.cos(angles), r * np.sin(angles)], axis=1) for r in range(1, 4)], axis=0)
26
  return torch.tensor(std_normal_contours, dtype=torch.float32)
27
 
28
- def generate_intermediate_points(gmm, grid_points, std_normal_contours, gmm_samples, T, N):
29
- intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(grid_points, T, N)
30
- contour_intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(std_normal_contours, T, N)
31
- grid_intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(grid_points, T, N)
32
-
33
- intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(gmm_samples, T, N)
34
- contour_intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(std_normal_contours, T, N)
35
- grid_intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(grid_points, T, N)
 
 
 
 
 
 
 
 
36
 
37
  return (intermediate_points_gmm_to_normal, contour_intermediate_points_gmm_to_normal, grid_intermediate_points_gmm_to_normal,
38
  intermediate_points_normal_to_gmm, contour_intermediate_points_normal_to_gmm, grid_intermediate_points_normal_to_gmm)
@@ -52,17 +61,3 @@ def plot_samples_and_contours(samples, contours, grid_points, title):
52
  ax.set_aspect('equal', adjustable='box')
53
  plt.close(fig)
54
  return fig, ax
55
-
56
- def create_animation(fig, ax, frames, intermediate_points, intermediate_samples, intermediate_contours, intermediate_grid):
57
- scatter_grid = ax.scatter([], [], c='black', alpha=0.5, s=1, label='Grid Points')
58
- contour_scatter = ax.scatter([], [], c='blue', alpha=0.5, s=3, label='Contours')
59
- scatter_samples = ax.scatter([], [], c='red', alpha=0.5, label='Samples')
60
-
61
- def update(frame):
62
- scatter_grid.set_offsets(intermediate_points[frame].numpy())
63
- scatter_samples.set_offsets(intermediate_samples[frame].numpy())
64
- contour_scatter.set_offsets(intermediate_contours[frame].numpy())
65
- return scatter_grid, scatter_samples, contour_scatter
66
-
67
- anim = FuncAnimation(fig, update, frames=frames, blit=True)
68
- return anim
 
3
  import torch
4
  import numpy as np
5
  import matplotlib.pyplot as plt
 
6
  from gmm import GaussianMixtureModel
7
 
8
  def initialize_gmm(mu_list, Sigma_list, pi_list):
 
14
  def generate_grid(dx):
15
  x_positions = np.arange(-10, 10.5, 0.5)
16
  y_positions = np.arange(-10, 10.5, 0.5)
17
+ fine_points = np.arange(-10, 10 + dx, dx)
18
+ ones_same_size = np.ones_like(fine_points)
19
+ vertical_lines = [np.stack([x*ones_same_size, fine_points], axis=1) for x in x_positions]
20
+ horizontal_lines = [np.stack([fine_points, y*ones_same_size], axis=1) for y in y_positions]
21
  grid_points = np.concatenate(vertical_lines + horizontal_lines, axis=0)
22
  return torch.tensor(grid_points, dtype=torch.float32)
23
 
 
26
  std_normal_contours = np.concatenate([np.stack([r * np.cos(angles), r * np.sin(angles)], axis=1) for r in range(1, 4)], axis=0)
27
  return torch.tensor(std_normal_contours, dtype=torch.float32)
28
 
29
+ def transform_std_to_gmm_contours(std_contours, mu, Sigma):
30
+ gmm_contours = []
31
+ for k in range(mu.shape[0]):
32
+ L = torch.linalg.cholesky(Sigma[k])
33
+ gmm_contours.append(mu[k] + torch.matmul(std_contours, L.T))
34
+ return torch.cat(gmm_contours, dim=0)
35
+
36
+ def generate_intermediate_points(gmm, grid_points, std_normal_contours, gmm_samples, normal_samples, T, N):
37
+ gmm_contours = transform_std_to_gmm_contours(std_normal_contours, gmm.mu.squeeze(), gmm.Sigma)
38
+ intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(gmm_samples.clone(), T, N)
39
+ contour_intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(gmm_contours.clone(), T, N)
40
+ grid_intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(grid_points.clone(), T, N)
41
+
42
+ intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(normal_samples.clone(), T, N)
43
+ contour_intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(std_normal_contours.clone(), T, N)
44
+ grid_intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(grid_points.clone(), T, N)
45
 
46
  return (intermediate_points_gmm_to_normal, contour_intermediate_points_gmm_to_normal, grid_intermediate_points_gmm_to_normal,
47
  intermediate_points_normal_to_gmm, contour_intermediate_points_normal_to_gmm, grid_intermediate_points_normal_to_gmm)
 
61
  ax.set_aspect('equal', adjustable='box')
62
  plt.close(fig)
63
  return fig, ax