File size: 8,965 Bytes
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import numpy as np
import torch
from PIL import Image
from torchvision import transforms
from datetime import datetime

from .ldm.util import load_and_preprocess, instantiate_from_config
from .pose_funcs import probe_pose, find_optimal_poses, get_inv_pose, add_pose, pairwise_loss

from .oee.utils.elev_est_api import elev_est_api, ElevEstHelper
from .sampling import sample_images


def load_image(img_path, mask_path=None, preprocessor=None, threshold=0.9):

    img = Image.open(img_path)

    if preprocessor is not None:
        img = load_and_preprocess(preprocessor, img)
    else:
        if img.mode == 'RGBA':
            img = np.asarray(img, dtype=np.float32) / 255.
            img[img[:, :, -1] <= threshold] = [1., 1., 1., 1.] # thresholding background
            img = img[:, :, :3]
        elif img.mode == 'RGB':
            if mask_path is not None:
                mask = Image.open(mask_path)
                bkg = Image.new('RGB', (img.width, img.height), color=(255, 255, 255))
                img = Image.composite(img, bkg, mask)
            img = np.asarray(img, dtype=np.float32) / 255.
        else:
            print('Wrong format:', img_path)

    return img


def load_model_from_config(config, ckpt, device, verbose=False):
    print(f'Loading model from {ckpt}')
    pl_sd = torch.load(ckpt, map_location=device)
    if 'global_step' in pl_sd:
        step = pl_sd['global_step']
        print(f'Global Step: {step}')
    sd = pl_sd['state_dict']
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print('missing keys:')
        print(m)
    if len(u) > 0 and verbose:
        print('unexpected keys:')
        print(u)

    model.to(device)
    model.eval()
    return model


def estimate_elevs(model, images, est_type=None, matcher_ckpt_path=None):

    num = len(images)

    elevs = {i: None for i in range(num)}
    elev_ranges = {i: None for i in range(num)}

    if est_type == 'all':
        matcher = ElevEstHelper.get_feature_matcher(matcher_ckpt_path, model.device)
        for i in range(num):
            simgs = sample_surrounding_images(model, images[i])
            elev = elev_est_api(matcher, simgs, min_elev=20, max_elev=160)
            elevs[i] = elev
        
        for i in range(num):
            if elevs[i] is not None:
                elevs[i] = np.deg2rad(elevs[i])

        for i in range(1, num):

            if elevs[i] is not None and elevs[0] is not None:
                elev_ranges[i] = np.array([ elevs[i] - elevs[0] ])
            elif elevs[i] is not None:
                elev_ranges[i] = -make_elev_probe_range(elevs[i])
            elif elevs[0] is not None:
                elev_ranges[i] = make_elev_probe_range(elevs[0])

    elif est_type == 'simple':
        matcher = ElevEstHelper.get_feature_matcher(matcher_ckpt_path, model.device)
        simgs = sample_surrounding_images(model, images[0])
        elev = elev_est_api(matcher, simgs, min_elev=20, max_elev=160)
        elevs[0] = np.deg2rad(elev) if elev is not None else None
        ae = elevs[0] if elevs[0] is not None else np.pi/2
        for i in range(1, num):
            elev_ranges[i] = np.array([np.pi/2 - ae])

    return elevs, elev_ranges        


def estimate_poses(
        model, images, 
        seed_cand_num=8, 
        init_type='pairwise', 
        optm_type='pairwise', 
        probe_ts_range=[0.02, 0.98], ts_range=[0.02, 0.98], 
        probe_bsz=16, 
        adjust_factor=10., 
        adjust_iters=10, 
        adjust_bsz=1, 
        refine_factor=1., 
        refine_iters=600,
        refine_bsz=1, 
        noise=None, 
        elevs=None, 
        elev_ranges=None
    ):

    num = len(images)

    if elevs is None:
        elevs = {i: None for i in range(num)}
    if elev_ranges is None:
        elev_ranges = {i: None for i in range(num)}

    if num <= 2:
        init_type = 'pairwise'

    cands = {}
    losses = {}

    init_poses = {i: None for i in range(num)}
    pairwise_init_poses = {i: None for i in range(num)}

    print('Initialization: Probe', datetime.now())


    images = [ img.permute(0, 2, 3, 1) for img in images ]

    for i in range(1, num):

        print('PAIR', 0, i, datetime.now())

        azimuth_range = np.arange(start=0.0, stop=np.pi*2, step=np.pi*2 / seed_cand_num)

        all_cands = probe_pose(model, images[0], images[i], probe_ts_range, probe_bsz, theta_range=elev_ranges[i], azimuth_range=azimuth_range, noise=noise)
        all_cands = sorted(all_cands)

        print('Exploration', len(all_cands), datetime.now())

        adjusted_cands = all_cands[:5]
        if adjust_iters > 0:
            adjusted_cands = []
            '''only adjust the first half'''
            for cand in all_cands[:len(all_cands)//2]:
            
                out_poses, _, _ = find_optimal_poses(
                    model, [images[0], images[i]], 
                    adjust_factor, 
                    bsz=adjust_bsz,
                    n_iter=adjust_iters, 
                    init_poses={1: cand[1]}, 
                    ts_range=ts_range,
                    print_n=100,
                    avg_last_n=1
                )

                loss = pairwise_loss(out_poses[0], model, images[0], images[i], probe_ts_range, probe_bsz, noise=noise)
                adjusted_cands.append((loss, out_poses[0], cand[0], cand[1]))

            adjusted_cands = sorted(adjusted_cands)[:5]

        for cand in adjusted_cands:
            print(cand)

        cands[i] = [ cand[:2] for cand in adjusted_cands ]
        losses[i] = [loss if (init_type == 'pairwise') else 0.0 for loss, _ in cands[i]]

        pairwise_init_poses[i] = min(cands[i])[1]

    print('Selection', datetime.now())

    if init_type == 'triangular':

        for i in range(1, num):

            for j in range(i+1, num):

                iloss = [ [None for v in range(0, len(cands[j]))] for u in range(0, len(cands[i])) ]
                jloss = [ [None for u in range(0, len(cands[i]))] for v in range(0, len(cands[j])) ]

                for u in range(0, len(cands[i])):

                    la, pa = cands[i][u]

                    # pose i -> 0
                    pa = get_inv_pose(pa)

                    for v in range(0, len(cands[j])):

                        # pose 0 -> j
                        lb, pb = cands[j][v]

                        theta, azimuth, radius = add_pose(pa, pb)
                        lp = pairwise_loss([theta, azimuth, radius], model, images[i], images[j], probe_ts_range, probe_bsz, noise=noise)

                        iloss[u][v] = la + lb + lp
                        jloss[v][u] = la + lb + lp

                for u in range(0, len(cands[i])):
                    losses[i][u] += min(min(iloss[u]), cands[i][u][0]*3)
                
                for v in range(0, len(cands[j])):
                    losses[j][v] += min(min(jloss[v]), cands[j][v][0]*3)

    for i in range(1, num):

        ranks = sorted([x for x in range(0, len(losses[i]))], key=lambda x: losses[i][x])

        min_rank = ranks[0]

        for u in range(0, len(cands[i])):
            print(cands[i][u], losses[i][u])
        print(i, 'SELECT', min_rank, losses[i][min_rank])

        init_poses[i] = cands[i][min_rank][1]

    print('Refinement', datetime.now())

    combinations = None
    if optm_type == 'pairwise':
        combinations = [ (0, i) for i in range(1, num) ] + [ (i, 0) for i in range(1, num) ]

    elif optm_type == 'triangular':
        combinations = []
        for i in range(0, num):
            for j in range(i+1, num):
                combinations.append((i, j))
                combinations.append((j, i))

    print('Combinations', len(combinations), combinations)

    '''Refinement'''
    out_poses, _, loss = find_optimal_poses(
        model, images, 
        refine_factor, 
        bsz=refine_bsz,
        n_iter=(num-1)*refine_iters, 
        init_poses=init_poses, 
        ts_range=ts_range,
        combinations=combinations,
        avg_last_n=20,
        print_n=100
    )

    print('Done', datetime.now())

    aux_data = {
        'tri_init_sph': init_poses,
        'pw_init_sph': pairwise_init_poses,
        'elev': elevs
    }

    return out_poses, aux_data


def make_elev_probe_range(elev, interval=np.pi/4):

    up_range = np.arange(elev, 0, -interval)
    down_range = np.arange(elev+interval, np.pi, interval)
    probe_range = np.concatenate([up_range, down_range])
    probe_range -= elev

    return probe_range


def sample_surrounding_images(model, image):

    s0 = sample_images(model, image, float(np.deg2rad(-10)), 0, 0, n_samples=1)
    s1 = sample_images(model, image, float(np.deg2rad(+10)), 0, 0, n_samples=1)
    s2 = sample_images(model, image, 0, float(np.deg2rad(-10)), 0, n_samples=1)
    s3 = sample_images(model, image, 0, float(np.deg2rad(+10)), 0, n_samples=1)

    return s0 + s1 + s2 + s3