ID-Pose / src /oee /utils /utils3d.py
tokenid
upload
917fe92
raw
history blame
1.91 kB
import numpy as np
import torch
def cart_to_hom(pts):
"""
:param pts: (N, 3 or 2)
:return pts_hom: (N, 4 or 3)
"""
if isinstance(pts, np.ndarray):
pts_hom = np.concatenate((pts, np.ones([*pts.shape[:-1], 1], dtype=np.float32)), -1)
else:
ones = torch.ones([*pts.shape[:-1], 1], dtype=torch.float32, device=pts.device)
pts_hom = torch.cat((pts, ones), dim=-1)
return pts_hom
def hom_to_cart(pts):
return pts[..., :-1] / pts[..., -1:]
def canonical_to_camera(pts, pose):
pts = cart_to_hom(pts)
pts = pts @ pose.transpose(-1, -2)
pts = hom_to_cart(pts)
return pts
def rect_to_img(K, pts_rect):
from dl_ext.vision_ext.datasets.kitti.structures import Calibration
pts_2d_hom = pts_rect @ K.t()
pts_img = Calibration.hom_to_cart(pts_2d_hom)
return pts_img
def calc_pose(phis, thetas, size, radius=1.2):
import torch
def normalize(vectors):
return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10)
thetas = torch.FloatTensor(thetas)
phis = torch.FloatTensor(phis)
centers = torch.stack([
radius * torch.sin(thetas) * torch.sin(phis),
-radius * torch.cos(thetas) * torch.sin(phis),
radius * torch.cos(phis),
], dim=-1) # [B, 3]
# lookat
forward_vector = normalize(centers).squeeze(0)
up_vector = torch.FloatTensor([0, 0, 1]).unsqueeze(0).repeat(size, 1)
right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1))
if right_vector.pow(2).sum() < 0.01:
right_vector = torch.FloatTensor([0, 1, 0]).unsqueeze(0).repeat(size, 1)
up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1))
poses = torch.eye(4, dtype=torch.float).unsqueeze(0).repeat(size, 1, 1)
poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1)
poses[:, :3, 3] = centers
return poses