Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
def cart_to_hom(pts): | |
""" | |
:param pts: (N, 3 or 2) | |
:return pts_hom: (N, 4 or 3) | |
""" | |
if isinstance(pts, np.ndarray): | |
pts_hom = np.concatenate((pts, np.ones([*pts.shape[:-1], 1], dtype=np.float32)), -1) | |
else: | |
ones = torch.ones([*pts.shape[:-1], 1], dtype=torch.float32, device=pts.device) | |
pts_hom = torch.cat((pts, ones), dim=-1) | |
return pts_hom | |
def hom_to_cart(pts): | |
return pts[..., :-1] / pts[..., -1:] | |
def canonical_to_camera(pts, pose): | |
pts = cart_to_hom(pts) | |
pts = pts @ pose.transpose(-1, -2) | |
pts = hom_to_cart(pts) | |
return pts | |
def rect_to_img(K, pts_rect): | |
from dl_ext.vision_ext.datasets.kitti.structures import Calibration | |
pts_2d_hom = pts_rect @ K.t() | |
pts_img = Calibration.hom_to_cart(pts_2d_hom) | |
return pts_img | |
def calc_pose(phis, thetas, size, radius=1.2): | |
import torch | |
def normalize(vectors): | |
return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10) | |
thetas = torch.FloatTensor(thetas) | |
phis = torch.FloatTensor(phis) | |
centers = torch.stack([ | |
radius * torch.sin(thetas) * torch.sin(phis), | |
-radius * torch.cos(thetas) * torch.sin(phis), | |
radius * torch.cos(phis), | |
], dim=-1) # [B, 3] | |
# lookat | |
forward_vector = normalize(centers).squeeze(0) | |
up_vector = torch.FloatTensor([0, 0, 1]).unsqueeze(0).repeat(size, 1) | |
right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1)) | |
if right_vector.pow(2).sum() < 0.01: | |
right_vector = torch.FloatTensor([0, 1, 0]).unsqueeze(0).repeat(size, 1) | |
up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1)) | |
poses = torch.eye(4, dtype=torch.float).unsqueeze(0).repeat(size, 1, 1) | |
poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1) | |
poses[:, :3, 3] = centers | |
return poses | |