Spaces:
Running
on
Zero
Running
on
Zero
tokenid
commited on
Commit
·
146da98
1
Parent(s):
917fe92
fix plot stuck
Browse files- app.py +4 -4
- src/pose_estimation.py +15 -16
app.py
CHANGED
@@ -151,7 +151,7 @@ def run_pose_exploration_a(cam_vis, image1, image2):
|
|
151 |
matcher_ckpt_path=_matcher_ckpt_path_
|
152 |
)
|
153 |
|
154 |
-
fig =
|
155 |
|
156 |
return elevs, elev_ranges, fig
|
157 |
|
@@ -170,8 +170,8 @@ def run_pose_exploration_b(cam_vis, image1, image2, elevs, elev_ranges, probe_bs
|
|
170 |
result_poses, aux_data = estimate_poses(
|
171 |
_model_, images,
|
172 |
seed_cand_num=8,
|
173 |
-
|
174 |
-
|
175 |
probe_ts_range=[0.2, 0.21],
|
176 |
ts_range=[0.2, 0.21],
|
177 |
probe_bsz=probe_bsz,
|
@@ -392,4 +392,4 @@ def run_demo():
|
|
392 |
|
393 |
if __name__ == '__main__':
|
394 |
|
395 |
-
run_demo()
|
|
|
151 |
matcher_ckpt_path=_matcher_ckpt_path_
|
152 |
)
|
153 |
|
154 |
+
fig = None
|
155 |
|
156 |
return elevs, elev_ranges, fig
|
157 |
|
|
|
170 |
result_poses, aux_data = estimate_poses(
|
171 |
_model_, images,
|
172 |
seed_cand_num=8,
|
173 |
+
explore_type='triangular',
|
174 |
+
refine_type='triangular',
|
175 |
probe_ts_range=[0.2, 0.21],
|
176 |
ts_range=[0.2, 0.21],
|
177 |
probe_bsz=probe_bsz,
|
|
|
392 |
|
393 |
if __name__ == '__main__':
|
394 |
|
395 |
+
run_demo()
|
src/pose_estimation.py
CHANGED
@@ -97,8 +97,8 @@ def estimate_elevs(model, images, est_type=None, matcher_ckpt_path=None):
|
|
97 |
def estimate_poses(
|
98 |
model, images,
|
99 |
seed_cand_num=8,
|
100 |
-
|
101 |
-
|
102 |
probe_ts_range=[0.02, 0.98], ts_range=[0.02, 0.98],
|
103 |
probe_bsz=16,
|
104 |
adjust_factor=10.,
|
@@ -120,16 +120,15 @@ def estimate_poses(
|
|
120 |
elev_ranges = {i: None for i in range(num)}
|
121 |
|
122 |
if num <= 2:
|
123 |
-
|
124 |
|
125 |
cands = {}
|
126 |
losses = {}
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
print('Initialization: Probe', datetime.now())
|
132 |
|
|
|
133 |
|
134 |
images = [ img.permute(0, 2, 3, 1) for img in images ]
|
135 |
|
@@ -170,13 +169,13 @@ def estimate_poses(
|
|
170 |
print(cand)
|
171 |
|
172 |
cands[i] = [ cand[:2] for cand in adjusted_cands ]
|
173 |
-
losses[i] = [loss if (
|
174 |
|
175 |
-
|
176 |
|
177 |
print('Selection', datetime.now())
|
178 |
|
179 |
-
if
|
180 |
|
181 |
for i in range(1, num):
|
182 |
|
@@ -219,15 +218,15 @@ def estimate_poses(
|
|
219 |
print(cands[i][u], losses[i][u])
|
220 |
print(i, 'SELECT', min_rank, losses[i][min_rank])
|
221 |
|
222 |
-
|
223 |
|
224 |
print('Refinement', datetime.now())
|
225 |
|
226 |
combinations = None
|
227 |
-
if
|
228 |
combinations = [ (0, i) for i in range(1, num) ] + [ (i, 0) for i in range(1, num) ]
|
229 |
|
230 |
-
elif
|
231 |
combinations = []
|
232 |
for i in range(0, num):
|
233 |
for j in range(i+1, num):
|
@@ -242,7 +241,7 @@ def estimate_poses(
|
|
242 |
refine_factor,
|
243 |
bsz=refine_bsz,
|
244 |
n_iter=(num-1)*refine_iters,
|
245 |
-
init_poses=
|
246 |
ts_range=ts_range,
|
247 |
combinations=combinations,
|
248 |
avg_last_n=20,
|
@@ -252,8 +251,8 @@ def estimate_poses(
|
|
252 |
print('Done', datetime.now())
|
253 |
|
254 |
aux_data = {
|
255 |
-
'
|
256 |
-
'
|
257 |
'elev': elevs
|
258 |
}
|
259 |
|
|
|
97 |
def estimate_poses(
|
98 |
model, images,
|
99 |
seed_cand_num=8,
|
100 |
+
explore_type='pairwise',
|
101 |
+
refine_type='pairwise',
|
102 |
probe_ts_range=[0.02, 0.98], ts_range=[0.02, 0.98],
|
103 |
probe_bsz=16,
|
104 |
adjust_factor=10.,
|
|
|
120 |
elev_ranges = {i: None for i in range(num)}
|
121 |
|
122 |
if num <= 2:
|
123 |
+
explore_type = 'pairwise'
|
124 |
|
125 |
cands = {}
|
126 |
losses = {}
|
127 |
|
128 |
+
ep_poses = {i: None for i in range(num)}
|
129 |
+
pairwise_ep_poses = {i: None for i in range(num)}
|
|
|
|
|
130 |
|
131 |
+
print('Start', datetime.now())
|
132 |
|
133 |
images = [ img.permute(0, 2, 3, 1) for img in images ]
|
134 |
|
|
|
169 |
print(cand)
|
170 |
|
171 |
cands[i] = [ cand[:2] for cand in adjusted_cands ]
|
172 |
+
losses[i] = [loss if (explore_type == 'pairwise') else 0.0 for loss, _ in cands[i]]
|
173 |
|
174 |
+
pairwise_ep_poses[i] = min(cands[i])[1]
|
175 |
|
176 |
print('Selection', datetime.now())
|
177 |
|
178 |
+
if explore_type == 'triangular':
|
179 |
|
180 |
for i in range(1, num):
|
181 |
|
|
|
218 |
print(cands[i][u], losses[i][u])
|
219 |
print(i, 'SELECT', min_rank, losses[i][min_rank])
|
220 |
|
221 |
+
ep_poses[i] = cands[i][min_rank][1]
|
222 |
|
223 |
print('Refinement', datetime.now())
|
224 |
|
225 |
combinations = None
|
226 |
+
if refine_type == 'pairwise':
|
227 |
combinations = [ (0, i) for i in range(1, num) ] + [ (i, 0) for i in range(1, num) ]
|
228 |
|
229 |
+
elif refine_type == 'triangular':
|
230 |
combinations = []
|
231 |
for i in range(0, num):
|
232 |
for j in range(i+1, num):
|
|
|
241 |
refine_factor,
|
242 |
bsz=refine_bsz,
|
243 |
n_iter=(num-1)*refine_iters,
|
244 |
+
init_poses=ep_poses,
|
245 |
ts_range=ts_range,
|
246 |
combinations=combinations,
|
247 |
avg_last_n=20,
|
|
|
251 |
print('Done', datetime.now())
|
252 |
|
253 |
aux_data = {
|
254 |
+
'tri_ep_sph': ep_poses,
|
255 |
+
'pw_ep_sph': pairwise_ep_poses,
|
256 |
'elev': elevs
|
257 |
}
|
258 |
|