Spaces:
Runtime error
Runtime error
File size: 41,588 Bytes
46cb01f 7aa2f4b 42ce7dd 46cb01f 90320ea 46cb01f a30dbd3 3f0364c 46cb01f 3f0364c 46cb01f 3f0364c 46cb01f 3f0364c 46cb01f de74f11 46cb01f 3f0364c 0be4942 3f0364c 19d68bb 3f0364c 46cb01f 3f0364c 46cb01f 3d61350 46cb01f 3f0364c 46cb01f 3f0364c 46cb01f 48c07ca 46cb01f 5a3211f 46cb01f 3f0364c 46cb01f 6c27b0d 46cb01f 1c44a7d 46cb01f 498559f dbe8c41 498559f 1c44a7d 5b79afd 1c44a7d 754f876 46cb01f a104edb 46cb01f a104edb 46cb01f c9e9575 46cb01f 3f0364c ad6ad64 a173dad ad6ad64 3f0364c ad6ad64 3f0364c ad6ad64 3f0364c ad6ad64 3f0364c ad6ad64 3f0364c ad6ad64 3f0364c 46cb01f 5a3211f 46cb01f 5a3211f 46cb01f 19070ab b20769d 19070ab 754f876 19070ab 46cb01f 62dad48 4c5e5a7 46cb01f 3f0364c 46cb01f 97a008e 46cb01f d9f5a35 46cb01f d9f5a35 46cb01f d9f5a35 46cb01f 3f0364c 62dad48 3f0364c 499ddb2 3f0364c e8709a6 3f0364c de74f11 46cb01f 4aced93 09362db 4aced93 3d61350 e803feb 3d61350 46cb01f 3d61350 46cb01f 6d252e9 4aced93 3d61350 46cb01f 4aced93 3d61350 46cb01f 3f0364c 46cb01f 835ea55 46cb01f 835ea55 46cb01f 3f0364c 19946be 6c1f112 df3c7bd 46cb01f df3c7bd 835ea55 46cb01f 32dc2d8 46cb01f c9e9575 46cb01f c9e9575 46cb01f c9e9575 46cb01f 5a3211f 46cb01f 600ad79 46cb01f c9e9575 5960e87 c9e9575 4aced93 f65ccb3 46cb01f 9db361a d61405b 46cb01f 9db361a 46cb01f 9db361a 46cb01f c9e9575 4d55db6 c9e9575 46cb01f c9e9575 4d55db6 c9e9575 46cb01f c9e9575 46cb01f c9e9575 46cb01f 9db361a 46cb01f 9db361a 46cb01f 9db361a 46cb01f 9db361a 46cb01f c9e9575 46cb01f 498559f 46cb01f 566d5f2 46cb01f 32dc2d8 19070ab 566d5f2 32dc2d8 566d5f2 32dc2d8 19070ab 566d5f2 a30dbd3 d449092 6e89e9e aecf3a7 a30dbd3 3e6ab1f a30dbd3 aecf3a7 d449092 99a1ff5 d449092 09362db aecf3a7 09362db a30dbd3 d449092 566d5f2 19070ab 3fef9c1 566d5f2 900136f 566d5f2 754f876 283adc6 a30dbd3 3fef9c1 566d5f2 19070ab 566d5f2 46cb01f 1c44a7d a30dbd3 754f876 1c44a7d 46cb01f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for seq2seq, text to image.
Script adapted from run_summarization_flax.py
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import os
# set a common huggingface cache folder (used with datasets and transformers) and wandb cache folder (used with artifacts)
os.environ['HF_HOME'] = '/data/huggingface/' # required before importing transformers & datasets
os.environ['WANDB_CACHE_DIR'] = '/data/wandb/' # required before importing wandb
import logging as pylogging # To avoid collision with transformers.utils.logging
import sys
import time
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Optional
import json
import datasets
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import Dataset, load_dataset, load_metric
from tqdm import tqdm
import jax
import jax.numpy as jnp
import optax
import transformers
from filelock import FileLock
from flax import jax_utils, traverse_util
from flax.serialization import from_bytes, to_bytes
import flax.linen as nn
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForSeq2SeqLM,
FlaxBartForConditionalGeneration,
HfArgumentParser,
TrainingArguments,
)
from transformers.models.bart.modeling_flax_bart import *
from transformers.file_utils import is_offline_mode
import wandb
logger = pylogging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# Model hyperparameters, for convenience
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
BOS_TOKEN_ID = 16384
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=BASE_MODEL,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
},
)
from_checkpoint: Optional[str] = field(
default=None,
metadata={
"help": "Loads a pretrained wandb checkpoint. Use artifact reference."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default='caption',
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
encoding_column: Optional[str] = field(
default='encoding',
metadata={"help": "The name of the column in the datasets containing the image encodings."},
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
)
max_source_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
no_decay: bool = field(
default=False, metadata={"help": "Whether to use decay in the learning rate scheduler."}
)
max_target_length: Optional[int] = field(
default=OUTPUT_LENGTH,
metadata={
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
val_max_target_length: Optional[int] = field(
default=OUTPUT_LENGTH,
metadata={
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
"during evaluation."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
preprocessing_num_workers: Optional[int] = field(
default=80, # ensure we have the same datasets cached data and avoid using too much space
metadata={"help": "The number of processes to use for the preprocessing."},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
predict_with_generate: bool = field(
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
"which is used during evaluation."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
log_interval: Optional[int] = field(
default=40,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
log_model: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
save_model_steps: Optional[int] = field(
default=3000, # about once every hour in our experiments
metadata={
"help": "For logging the model more frequently. Used only when `log_model` is set."
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["tsv", "csv", "json"], "`train_file` should be a tsv, csv or json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["tsv", "csv", "json"], "`validation_file` should be a tsv, csv or json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
grad_accum: jnp.ndarray
optimizer_step: int
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
class CustomFlaxBartModule(FlaxBartModule):
def setup(self):
# check config is valid, otherwise set default values
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)
# we keep shared to easily load pre-trained weights
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
# a separate embedding is used for the decoder
self.decoder_embed = nn.Embed(
self.config.vocab_size_output,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
# the decoder has a different config
decoder_config = BartConfig(self.config.to_dict())
decoder_config.max_position_embeddings = self.config.max_position_embeddings_decoder
decoder_config.vocab_size = self.config.vocab_size_output
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
def setup(self):
# check config is valid, otherwise set default values
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size_output,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.config.vocab_size_output))
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
module_class = CustomFlaxBartForConditionalGenerationModule
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
"""
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
Shuffle batches if `shuffle` is `True`.
"""
steps_per_epoch = len(dataset) // batch_size
if shuffle:
batch_idx = jax.random.permutation(rng, len(dataset))
else:
batch_idx = jnp.arange(len(dataset))
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
for idx in batch_idx:
batch = dataset[idx]
batch = {k: jnp.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float, no_decay: bool
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
if no_decay:
return warmup_fn
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def wandb_log(metrics, step=None, prefix=None):
if jax.process_index() == 0:
log_metrics = {f'{prefix}/{k}' if prefix is not None else k: jax.device_get(v) for k,v in metrics.items()}
if step is not None:
log_metrics['train/step'] = step
wandb.log(log_metrics)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
logger.warning(f"WARNING: eval_steps has been manually hardcoded") # TODO: remove it later, convenient for now
training_args.eval_steps = 400
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Set up wandb run
wandb.init(
entity='wandb',
project='hf-flax-dalle-mini',
job_type='Seq2SeqVQGAN',
config=parser.parse_args()
)
# set default x-axis as 'train/step'
wandb.define_metric('train/step')
wandb.define_metric('*', step_metric='train/step')
# Make one log on every process with the configuration for debugging.
pylogging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=pylogging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
data_files = {}
logger.warning(f"WARNING: Datasets path have been manually hardcoded") # TODO: remove it later, convenient for now
if data_args.train_file is not None:
data_files["train"] = ["/data/CC3M/training-encoded.tsv", "/data/CC12M/encoded-train.tsv", "/data/YFCC/metadata_encoded.tsv"]
if data_args.validation_file is not None:
data_files["validation"] = ["/data/CC3M/validation-encoded.tsv"]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Set up items to load or create
tokenizer = None
artifact_dir = None
def restore_state(state, artifact_dir):
# restore optimizer state
if (Path(artifact_dir) / 'opt_state.msgpack').exists():
with (Path(artifact_dir) / 'opt_state.msgpack').open('rb') as f:
opt_state = from_bytes(state.opt_state, f.read())
# restore steps
if (Path(artifact_dir) / 'training_state.json').exists():
with (Path(artifact_dir) / 'training_state.json').open('r') as f:
training_state = json.load(f)
step = training_state['step']
optimizer_step = step // training_args.gradient_accumulation_steps
state.replace(step=step, optimizer_step=optimizer_step)
if model_args.from_checkpoint is not None:
artifact = wandb.run.use_artifact(model_args.from_checkpoint)
artifact_dir = artifact.download()
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
# some models will try to change bos (because of force_bos_token_to_be_generated)
# we ensure bos and eos are not forced
model.config.force_bos_token_to_be_generated = False
model.config.forced_bos_token_id = None
model.config.forced_eos_token_id = None
# used in the preprocessing function
config = model.config
# load tokenizer if present
if (Path(artifact_dir) / 'tokenizer_config.json').exists():
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Set up our new model config
config = BartConfig.from_pretrained(model_args.model_name_or_path)
config.tie_word_embeddings = False
config.decoder_start_token_id = BOS_TOKEN_ID # for first token
config.bos_token_id = BOS_TOKEN_ID # should not be used (due to forced_bos_token_id)
config.pos_token_id = BOS_TOKEN_ID # should not be needed (as we generate until max_length)
config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable
config.forced_bos_token_id = None # we don't need this token
config.forced_eos_token_id = None # we don't need this token
config.force_bos_token_to_be_generated = False # otherwise it sets bos_token_id at loading
config.min_length = data_args.max_target_length
config.max_length = data_args.max_target_length
# Create a custom model and initialize it randomly
model = CustomFlaxBartForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
# Use pre-trained weights for encoder
model.params['model']['encoder'] = base_model.params['model']['encoder']
model.params['model']['shared'] = base_model.params['model']['shared']
del base_model
# Load tokenizer if it has not been set
if tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
print(f"TPUs: {jax.device_count()}")
assert jax.device_count() == 8, "TPUs in use, please check running processes"
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = dataset["train"].column_names
elif training_args.do_eval:
column_names = dataset["validation"].column_names
elif training_args.do_predict:
column_names = dataset["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
text_column = data_args.text_column
encoding_column = data_args.encoding_column
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = np.zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1]
shifted_input_ids[:, 0] = decoder_start_token_id
return shifted_input_ids
def preprocess_function(examples):
inputs = examples[text_column]
inputs = [prefix + inp for inp in inputs]
# Setting padding="max_length" as we need fixed length inputs for jitted functions
model_inputs = tokenizer(
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
)
# set up targets
# Note: labels correspond to our target indices
# decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
labels = [eval(indices) for indices in examples['encoding']]
labels = np.asarray(labels)
# We need the labels, in addition to the decoder_input_ids, for the compute_loss function
model_inputs["labels"] = labels
# In our case, this prepends the bos token and removes the last one
decoder_input_ids = shift_tokens_right(labels, config.decoder_start_token_id)
model_inputs["decoder_input_ids"] = decoder_input_ids
return model_inputs
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset")
train_dataset = dataset["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in dataset:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = dataset["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in dataset:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = dataset["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Metric
#metric = load_metric("rouge")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(preds, labels):
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results from ROUGE
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_steps = steps_per_epoch * num_epochs
total_optimization_steps = (len(train_dataset) // total_batch_size) * num_epochs
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
total_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
data_args.no_decay
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBart.
# For FlaxT5, one should correct the layer norm parameter naming
# accordingly - see `run_t5_mlm_flax.py` e.g.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
layer_norm_params = [
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
]
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
if training_args.adafactor:
# We use the default parameters here to initialize adafactor,
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
optimizer = optax.adafactor(
learning_rate=linear_decay_lr_schedule_fn,
)
else:
optimizer = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=optimizer,
dropout_rng=dropout_rng,
grad_accum=jax.tree_map(jnp.zeros_like, model.params),
optimizer_step=0,
)
if model_args.from_checkpoint is not None:
# restore optimizer state, step and optimizer_step
restore_state(state, artifact_dir)
# label smoothed cross entropy
def loss_fn(logits, labels):
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
loss = loss.mean()
return loss
# Define gradient update step fn
def train_step(state, batch):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss = loss_fn(logits, labels)
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grads = grad_fn(state.params)
grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum)
def update_fn():
grads = jax.tree_map(lambda x: x / training_args.gradient_accumulation_steps, grad_accum)
grads = jax.lax.pmean(grads, "batch")
new_state = state.apply_gradients(
grads=grads, grad_accum=jax.tree_map(jnp.zeros_like, grads), optimizer_step=state.optimizer_step + 1
)
return new_state
new_state = jax.lax.cond(
(state.step + 1) % training_args.gradient_accumulation_steps == 0,
lambda _: update_fn(),
lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1),
None,
)
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step)}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state.replace(dropout_rng=new_dropout_rng), metrics
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
loss = loss_fn(logits, labels)
# summarize metrics
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return metrics
# Define generation function
max_length = (
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def generate_step(params, batch):
model.params = params
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
return output_ids.sequences
# Create parallel version of the train and eval step
p_train_step = jax.pmap(
train_step, "batch", donate_argnums=(0,)
)
p_eval_step = jax.pmap(eval_step, "batch")
p_generate_step = jax.pmap(generate_step, "batch")
# Replicate the train state on each device
state = state.replicate()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(
f" Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}"
)
logger.info(f" Total global steps = {total_steps}")
logger.info(f" Total optimization steps = {total_optimization_steps}")
train_time = 0
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
global_step = 0
def run_evaluation():
# ======================== Evaluating ==============================
eval_metrics = []
if training_args.do_eval:
eval_preds = []
eval_labels = []
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
eval_steps = len(eval_dataset) // eval_batch_size
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
# Model forward
batch = next(eval_loader)
labels = batch["labels"]
metrics = p_eval_step(state.params, batch)
eval_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = p_generate_step(state.params, batch)
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
# log metrics
wandb_log(eval_metrics, step=global_step, prefix='eval')
# compute ROUGE metrics
rouge_desc = ""
# if data_args.predict_with_generate:
# rouge_metrics = compute_metrics(eval_preds, eval_labels)
# eval_metrics.update(rouge_metrics)
# rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
epochs.write(desc)
epochs.desc = desc
return eval_metrics
def run_save_model(state, step, epoch, eval_metrics=None):
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
# save model locally
model.save_pretrained(
training_args.output_dir,
params=params,
)
# save tokenizer
tokenizer.save_pretrained(training_args.output_dir)
# save state
state = unreplicate(state)
with (Path(training_args.output_dir) / 'opt_state.msgpack').open('wb') as f:
f.write(to_bytes(state.opt_state))
with (Path(training_args.output_dir) / 'training_state.json').open('w') as f:
json.dump({'step': state.step.item()}, f)
# save to W&B
if data_args.log_model:
metadata = {'step': step, 'epoch': epoch}
if eval_metrics is not None:
metadata['eval/loss'] = eval_metrics['loss']
artifact = wandb.Artifact(
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
)
artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack'))
artifact.add_file(str(Path(training_args.output_dir) / 'config.json'))
artifact.add_file(str(Path(training_args.output_dir) / 'tokenizer.json'))
artifact.add_file(str(Path(training_args.output_dir) / 'tokenizer_config.json'))
artifact.add_file(str(Path(training_args.output_dir) / 'vocab.json'))
artifact.add_file(str(Path(training_args.output_dir) / 'merges.txt'))
artifact.add_file(str(Path(training_args.output_dir) / 'special_tokens_map.json'))
artifact.add_file(str(Path(training_args.output_dir) / 'opt_state.msgpack'))
artifact.add_file(str(Path(training_args.output_dir) / 'training_state.json'))
wandb.run.log_artifact(artifact)
# save to the hub
if training_args.push_to_hub:
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch+1}",
temp_dir=True # avoid issues with being in a repository
)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# Generate an epoch by shuffling sampling indices from the train dataset
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
steps_per_epoch = len(train_dataset) // train_batch_size
# train
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
global_step +=1
batch = next(train_loader)
state, train_metric = p_train_step(state, batch)
if global_step % data_args.log_interval == 0 and jax.process_index() == 0:
# log metrics
wandb_log(unreplicate(train_metric), step=global_step, prefix='train')
if global_step % training_args.eval_steps == 0:
run_evaluation()
if global_step % data_args.save_model_steps == 0:
run_save_model(state, global_step, epoch)
# log final train metrics
wandb_log(unreplicate(train_metric), step=global_step, prefix='train')
train_time += time.time() - train_start
train_metric = unreplicate(train_metric)
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
)
# Final evaluation
eval_metrics = run_evaluation()
# save checkpoint after each epoch and push checkpoint to the hub
run_save_model(state, global_step, epoch, eval_metrics)
# ======================== Prediction loop ==============================
if training_args.do_predict:
logger.info("*** Predict ***")
pred_metrics = []
pred_generations = []
pred_labels = []
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
pred_steps = len(predict_dataset) // eval_batch_size
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
# Model forward
batch = next(pred_loader)
labels = batch["labels"]
metrics = p_eval_step(state.params, batch)
pred_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = p_generate_step(state.params, batch)
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
# normalize prediction metrics
pred_metrics = get_metrics(pred_metrics)
pred_metrics = jax.tree_map(jnp.mean, pred_metrics)
# compute ROUGE metrics
rouge_desc = ""
if data_args.predict_with_generate:
rouge_metrics = compute_metrics(pred_generations, pred_labels)
pred_metrics.update(rouge_metrics)
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
logger.info(desc)
if __name__ == "__main__":
main()
|