Spaces:
Runtime error
Runtime error
File size: 48,048 Bytes
b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 11ae595 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 2c2f570 b4dfea0 11ae595 b4dfea0 11ae595 b4dfea0 11ae595 b4dfea0 11ae595 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 |
{
"cells": [
{
"cell_type": "markdown",
"id": "d0b72877",
"metadata": {},
"source": [
"# vqgan-jax-encoding-yfcc100m"
]
},
{
"cell_type": "markdown",
"id": "ba7b31e6",
"metadata": {},
"source": [
"Same as `vqgan-jax-encoding-with-captions`, but for YFCC100M.\n",
"\n",
"This dataset was prepared by @borisdayma in Json lines format."
]
},
{
"cell_type": "code",
"execution_count": 92,
"id": "3b59489e",
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"\n",
"import requests\n",
"from PIL import Image\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"import torch\n",
"import torchvision.transforms as T\n",
"import torchvision.transforms.functional as TF\n",
"from torchvision.transforms import InterpolationMode\n",
"from torch.utils.data import Dataset, DataLoader\n",
"from torchvision.datasets.folder import default_loader\n",
"import os\n",
"\n",
"import jax\n",
"from jax import pmap"
]
},
{
"cell_type": "markdown",
"id": "511c3b9e",
"metadata": {},
"source": [
"## VQGAN-JAX model"
]
},
{
"cell_type": "code",
"execution_count": 93,
"id": "2ca50dc7",
"metadata": {},
"outputs": [],
"source": [
"from vqgan_jax.modeling_flax_vqgan import VQModel"
]
},
{
"cell_type": "markdown",
"id": "7b60da9a",
"metadata": {},
"source": [
"We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model."
]
},
{
"cell_type": "code",
"execution_count": 167,
"id": "29ce8b15",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
]
}
],
"source": [
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
]
},
{
"cell_type": "markdown",
"id": "c7c4c1e6",
"metadata": {},
"source": [
"## Dataset"
]
},
{
"cell_type": "code",
"execution_count": 94,
"id": "33861477",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 134,
"id": "81b19eca",
"metadata": {},
"outputs": [],
"source": [
"yfcc100m = Path('/home/khali/TPU-Test/YFCC100M_OpenAI_subset')\n",
"# Images are 'sharded' from the following directory\n",
"yfcc100m_images = yfcc100m/'data'/'data'/'images'\n",
"yfcc100m_metadata = yfcc100m/'metadata_YFCC100M.jsonl'\n",
"yfcc100m_output = yfcc100m/'metadata_encoded.tsv'"
]
},
{
"cell_type": "markdown",
"id": "1c58bb4a",
"metadata": {},
"source": [
"### Cleanup"
]
},
{
"cell_type": "markdown",
"id": "1a14ae3d",
"metadata": {},
"source": [
"We need to select entries with images that exist. Otherwise we can't build batches because `Dataloader` does not support `None` in batches. We use Huggingface Datasets, I understand they support threaded reading of jsonl files, and I was running out of memory when using pandas."
]
},
{
"cell_type": "code",
"execution_count": 96,
"id": "7811648c",
"metadata": {},
"outputs": [],
"source": [
"import datasets\n",
"from datasets import Dataset, load_dataset"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "4811a230",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"tcmalloc: large alloc 1254047744 bytes == 0xb2b08000 @ 0x7f9e78632680 0x7f9e78653824 0x585b92 0x504d56 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56 0x56acb6 0x5f5956 0x56aadf 0x5f5956 0x56acb6 0x568d9a 0x5f5b33 0x50b7f8 0x5f2702 0x56c332\n",
"tcmalloc: large alloc 1254047744 bytes == 0xfd74e000 @ 0x7f9e78632680 0x7f9e78653824 0x590214 0x586f90 0x56e1f3 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56 0x56acb6 0x5f5956 0x56aadf 0x5f5956 0x56acb6 0x568d9a 0x5f5b33 0x50b7f8 0x5f2702 0x56c332\n",
"tcmalloc: large alloc 5016190976 bytes == 0x148b42000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5019099136 bytes == 0x273f12000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5019811840 bytes == 0x39f9a8000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5024571392 bytes == 0x4cb4ec000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5021097984 bytes == 0x4cb4ec000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5022818304 bytes == 0x4cb4ec000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5020794880 bytes == 0x4cb4ec000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5019451392 bytes == 0x39f9a8000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5020565504 bytes == 0x4cb4ec000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5012561920 bytes == 0x273f12000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5021835264 bytes == 0x5f6cba000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n",
"tcmalloc: large alloc 5017436160 bytes == 0x273f12000 @ 0x7f9e78632680 0x7f9e78653824 0x5b9144 0x7f9b2929127e 0x7f9b29291a19 0x7f9b29291886 0x7f9b29291cef 0x7f9b2928f204 0x5f2cc9 0x5f30ff 0x5705f6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x56acb6 0x5f5956 0x5a8cb3 0x56ae94 0x568d9a 0x68cdc7 0x5ff5d4 0x5c3cb0 0x56aadf 0x501148 0x56c422 0x501148 0x56c422 0x501148 0x504d56\n"
]
}
],
"source": [
"# The metadata is too bog to load into memory at once, so chopping it into chunks\n",
"chunk_size=1000000\n",
"batch_no=1\n",
"for chunk in pd.read_json(yfcc100m_metadata, orient=\"records\", lines=True,chunksize=chunk_size):\n",
" chunk.to_csv('./chunks/chunk'+str(batch_no)+'.tsv', sep=\"\\t\", index=False)\n",
" batch_no+=1"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "46b2f083",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>photoid</th>\n",
" <th>uid</th>\n",
" <th>unickname</th>\n",
" <th>datetaken</th>\n",
" <th>dateuploaded</th>\n",
" <th>capturedevice</th>\n",
" <th>title</th>\n",
" <th>description</th>\n",
" <th>usertags</th>\n",
" <th>machinetags</th>\n",
" <th>...</th>\n",
" <th>licenseurl</th>\n",
" <th>serverid</th>\n",
" <th>farmid</th>\n",
" <th>secret</th>\n",
" <th>secretoriginal</th>\n",
" <th>ext</th>\n",
" <th>marker</th>\n",
" <th>key</th>\n",
" <th>title_clean</th>\n",
" <th>description_clean</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>137943</td>\n",
" <td>48600072071@N01</td>\n",
" <td>doctor+paradox</td>\n",
" <td>2004-08-01 18:13:06.0</td>\n",
" <td>1091409186</td>\n",
" <td>NaN</td>\n",
" <td>A+Picture+Share%21</td>\n",
" <td>Antenna</td>\n",
" <td>cameraphone,cayugaheights,green,hydrant,ithaca...</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-sa/2.0/</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1650c7cdc6</td>\n",
" <td>1650c7cdc6</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>d29e7c6a3028418c64eb15e3cf577c2</td>\n",
" <td>A Picture Share!</td>\n",
" <td>Antenna</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1246361</td>\n",
" <td>44124324682@N01</td>\n",
" <td>mharrsch</td>\n",
" <td>2004-11-03 23:04:02.0</td>\n",
" <td>1099523042</td>\n",
" <td>NaN</td>\n",
" <td>An+ornate+Roman+urn</td>\n",
" <td>Photographed+at+the+%3Ca+href%3D%22http%3A%2F%...</td>\n",
" <td>ancient,baltimore,burial,death,empire,funeral,...</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-sa/2.0/</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>cf37054610</td>\n",
" <td>cf37054610</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>d29f01b149167d683f9ddde464bb3db</td>\n",
" <td>An ornate Roman urn</td>\n",
" <td>Photographed at the Walters Art Museum, Baltim...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1251599</td>\n",
" <td>51035803024@N01</td>\n",
" <td>bmitd67</td>\n",
" <td>2004-10-30 17:09:32.0</td>\n",
" <td>1099538888</td>\n",
" <td>Canon+PowerShot+S30</td>\n",
" <td>Jai+%26+Tara+on+the+Cumberland</td>\n",
" <td>Another+trip+for+the+happy+couple.</td>\n",
" <td>blue+heron,cumberland+river,jai,tara,tennessee</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-sa/2.0/</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>4a4234e32c</td>\n",
" <td>4a4234e32c</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>d296e9e34bdae41edb6c679ff824ab2a</td>\n",
" <td>Jai & Tara on the Cumberland</td>\n",
" <td>Another trip for the happy couple.</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2348587</td>\n",
" <td>73621375@N00</td>\n",
" <td>Thom+Watson</td>\n",
" <td>2004-12-18 21:08:09.0</td>\n",
" <td>1103497228</td>\n",
" <td>SONY+DSC-W1</td>\n",
" <td>Castle+gate+-+%22lite-brited%22</td>\n",
" <td>Taken+at+the+Miracle+of+Lights+display+in+Cent...</td>\n",
" <td>bullrunpark,castle,centreville,christmas,decor...</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-sa/2.0/</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>7162c974c3</td>\n",
" <td>7162c974c3</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>d29ce96395848478b1e8396e44899</td>\n",
" <td>Castle gate - \"lite-brited\"</td>\n",
" <td>Taken at the Miracle of Lights display in Cent...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3516047</td>\n",
" <td>48600072071@N01</td>\n",
" <td>doctor+paradox</td>\n",
" <td>2005-01-18 16:44:18.0</td>\n",
" <td>1106084658</td>\n",
" <td>NaN</td>\n",
" <td>A+Picture+Share%21</td>\n",
" <td>Tabular</td>\n",
" <td>cameraphone,moblog,unfound</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-sa/2.0/</td>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>663e0d8b3d</td>\n",
" <td>663e0d8b3d</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>d29abf32c4e12ff881f975b70e0cec0</td>\n",
" <td>A Picture Share!</td>\n",
" <td>Tabular</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999995</th>\n",
" <td>4648651054</td>\n",
" <td>24511045@N04</td>\n",
" <td>mtfrazier</td>\n",
" <td>2010-05-02 15:47:45.0</td>\n",
" <td>1275083371</td>\n",
" <td>Canon+EOS+50D</td>\n",
" <td>U.S.+Navy+Blue+Angels%3A+2010</td>\n",
" <td>2+May+2010%0ASunday%0ASt.+Joseph%2C+Missouri</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-nd/2.0/</td>\n",
" <td>4072</td>\n",
" <td>5</td>\n",
" <td>2d12d73fb0</td>\n",
" <td>dd5856ea42</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>60fa2911cb81eb25b356e9fee978aef</td>\n",
" <td>U.S. Navy Blue Angels: 2010</td>\n",
" <td>2 May 2010 Sunday St. Joseph, Missouri</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999996</th>\n",
" <td>4652130996</td>\n",
" <td>21963865@N04</td>\n",
" <td>GRAB1.0</td>\n",
" <td>2010-05-29 19:23:10.0</td>\n",
" <td>1275200833</td>\n",
" <td>SONY+DSLR-A230</td>\n",
" <td>Attempts+on+Her+Life</td>\n",
" <td>BAPA+1+production+of+Martin+Crimp%27s+Attempts...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-nd/2.0/</td>\n",
" <td>4003</td>\n",
" <td>5</td>\n",
" <td>8889121579</td>\n",
" <td>2f46599456</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>60f5ef5ce4c2d24566226abebd67d4</td>\n",
" <td>Attempts on Her Life</td>\n",
" <td>BAPA 1 production of Martin Crimp's Attempts o...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999997</th>\n",
" <td>4652568339</td>\n",
" <td>64025277@N00</td>\n",
" <td>1Sock</td>\n",
" <td>2010-05-13 15:38:37.0</td>\n",
" <td>1275234267</td>\n",
" <td>Canon+EOS+DIGITAL+REBEL+XT</td>\n",
" <td>Carlsbad+Caverns+3</td>\n",
" <td>%E2%99%A5%E2%99%A5%E2%99%A5%E2%99%A5%E2%99%A5%...</td>\n",
" <td>carlsbad,carlsbad+caverns,cave,faa,new+mexico,...</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-nd/2.0/</td>\n",
" <td>4010</td>\n",
" <td>5</td>\n",
" <td>0a1808a69e</td>\n",
" <td>cf6d348e3d</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>60f029482d1d1028fda5281daf498f</td>\n",
" <td>Carlsbad Caverns 3</td>\n",
" <td>♥♥♥♥♥♥♥ Interested in purchasing this photogra...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999998</th>\n",
" <td>4653110895</td>\n",
" <td>20483509@N00</td>\n",
" <td>subberculture</td>\n",
" <td>2010-05-30 15:37:05.0</td>\n",
" <td>1275245596</td>\n",
" <td>Canon+DIGITAL+IXUS+40</td>\n",
" <td>Want</td>\n",
" <td>Isn%27t+that+gorgeous%3F</td>\n",
" <td>2010,edinburgh+museum,may,phonebox,wood</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-sa/2.0/</td>\n",
" <td>4066</td>\n",
" <td>5</td>\n",
" <td>77c3b3a254</td>\n",
" <td>c4697e1511</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>60f72775f433cf8de3efaeb431866153</td>\n",
" <td>Want</td>\n",
" <td>Isn't that gorgeous?</td>\n",
" </tr>\n",
" <tr>\n",
" <th>999999</th>\n",
" <td>4655503987</td>\n",
" <td>8457193@N07</td>\n",
" <td>zackojones</td>\n",
" <td>2010-05-30 15:34:58.0</td>\n",
" <td>1275310230</td>\n",
" <td>Canon+EOS+7D</td>\n",
" <td>Summertime</td>\n",
" <td>You+gotta+love+it%21</td>\n",
" <td>georgia,savannah,united+states,us</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>http://creativecommons.org/licenses/by-nc-sa/2.0/</td>\n",
" <td>4043</td>\n",
" <td>5</td>\n",
" <td>caff543bfe</td>\n",
" <td>f60952ac4d</td>\n",
" <td>jpg</td>\n",
" <td>0</td>\n",
" <td>60f687e11b913bce461e9525d8047e0</td>\n",
" <td>Summertime</td>\n",
" <td>You gotta love it!</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1000000 rows × 26 columns</p>\n",
"</div>"
],
"text/plain": [
" photoid uid unickname datetaken \\\n",
"0 137943 48600072071@N01 doctor+paradox 2004-08-01 18:13:06.0 \n",
"1 1246361 44124324682@N01 mharrsch 2004-11-03 23:04:02.0 \n",
"2 1251599 51035803024@N01 bmitd67 2004-10-30 17:09:32.0 \n",
"3 2348587 73621375@N00 Thom+Watson 2004-12-18 21:08:09.0 \n",
"4 3516047 48600072071@N01 doctor+paradox 2005-01-18 16:44:18.0 \n",
"... ... ... ... ... \n",
"999995 4648651054 24511045@N04 mtfrazier 2010-05-02 15:47:45.0 \n",
"999996 4652130996 21963865@N04 GRAB1.0 2010-05-29 19:23:10.0 \n",
"999997 4652568339 64025277@N00 1Sock 2010-05-13 15:38:37.0 \n",
"999998 4653110895 20483509@N00 subberculture 2010-05-30 15:37:05.0 \n",
"999999 4655503987 8457193@N07 zackojones 2010-05-30 15:34:58.0 \n",
"\n",
" dateuploaded capturedevice \\\n",
"0 1091409186 NaN \n",
"1 1099523042 NaN \n",
"2 1099538888 Canon+PowerShot+S30 \n",
"3 1103497228 SONY+DSC-W1 \n",
"4 1106084658 NaN \n",
"... ... ... \n",
"999995 1275083371 Canon+EOS+50D \n",
"999996 1275200833 SONY+DSLR-A230 \n",
"999997 1275234267 Canon+EOS+DIGITAL+REBEL+XT \n",
"999998 1275245596 Canon+DIGITAL+IXUS+40 \n",
"999999 1275310230 Canon+EOS+7D \n",
"\n",
" title \\\n",
"0 A+Picture+Share%21 \n",
"1 An+ornate+Roman+urn \n",
"2 Jai+%26+Tara+on+the+Cumberland \n",
"3 Castle+gate+-+%22lite-brited%22 \n",
"4 A+Picture+Share%21 \n",
"... ... \n",
"999995 U.S.+Navy+Blue+Angels%3A+2010 \n",
"999996 Attempts+on+Her+Life \n",
"999997 Carlsbad+Caverns+3 \n",
"999998 Want \n",
"999999 Summertime \n",
"\n",
" description \\\n",
"0 Antenna \n",
"1 Photographed+at+the+%3Ca+href%3D%22http%3A%2F%... \n",
"2 Another+trip+for+the+happy+couple. \n",
"3 Taken+at+the+Miracle+of+Lights+display+in+Cent... \n",
"4 Tabular \n",
"... ... \n",
"999995 2+May+2010%0ASunday%0ASt.+Joseph%2C+Missouri \n",
"999996 BAPA+1+production+of+Martin+Crimp%27s+Attempts... \n",
"999997 %E2%99%A5%E2%99%A5%E2%99%A5%E2%99%A5%E2%99%A5%... \n",
"999998 Isn%27t+that+gorgeous%3F \n",
"999999 You+gotta+love+it%21 \n",
"\n",
" usertags machinetags ... \\\n",
"0 cameraphone,cayugaheights,green,hydrant,ithaca... NaN ... \n",
"1 ancient,baltimore,burial,death,empire,funeral,... NaN ... \n",
"2 blue+heron,cumberland+river,jai,tara,tennessee NaN ... \n",
"3 bullrunpark,castle,centreville,christmas,decor... NaN ... \n",
"4 cameraphone,moblog,unfound NaN ... \n",
"... ... ... ... \n",
"999995 NaN NaN ... \n",
"999996 NaN NaN ... \n",
"999997 carlsbad,carlsbad+caverns,cave,faa,new+mexico,... NaN ... \n",
"999998 2010,edinburgh+museum,may,phonebox,wood NaN ... \n",
"999999 georgia,savannah,united+states,us NaN ... \n",
"\n",
" licenseurl serverid farmid \\\n",
"0 http://creativecommons.org/licenses/by-nc-sa/2.0/ 1 1 \n",
"1 http://creativecommons.org/licenses/by-nc-sa/2.0/ 1 1 \n",
"2 http://creativecommons.org/licenses/by-nc-sa/2.0/ 1 1 \n",
"3 http://creativecommons.org/licenses/by-nc-sa/2.0/ 2 1 \n",
"4 http://creativecommons.org/licenses/by-nc-sa/2.0/ 3 1 \n",
"... ... ... ... \n",
"999995 http://creativecommons.org/licenses/by-nc-nd/2.0/ 4072 5 \n",
"999996 http://creativecommons.org/licenses/by-nc-nd/2.0/ 4003 5 \n",
"999997 http://creativecommons.org/licenses/by-nc-nd/2.0/ 4010 5 \n",
"999998 http://creativecommons.org/licenses/by-sa/2.0/ 4066 5 \n",
"999999 http://creativecommons.org/licenses/by-nc-sa/2.0/ 4043 5 \n",
"\n",
" secret secretoriginal ext marker \\\n",
"0 1650c7cdc6 1650c7cdc6 jpg 0 \n",
"1 cf37054610 cf37054610 jpg 0 \n",
"2 4a4234e32c 4a4234e32c jpg 0 \n",
"3 7162c974c3 7162c974c3 jpg 0 \n",
"4 663e0d8b3d 663e0d8b3d jpg 0 \n",
"... ... ... ... ... \n",
"999995 2d12d73fb0 dd5856ea42 jpg 0 \n",
"999996 8889121579 2f46599456 jpg 0 \n",
"999997 0a1808a69e cf6d348e3d jpg 0 \n",
"999998 77c3b3a254 c4697e1511 jpg 0 \n",
"999999 caff543bfe f60952ac4d jpg 0 \n",
"\n",
" key title_clean \\\n",
"0 d29e7c6a3028418c64eb15e3cf577c2 A Picture Share! \n",
"1 d29f01b149167d683f9ddde464bb3db An ornate Roman urn \n",
"2 d296e9e34bdae41edb6c679ff824ab2a Jai & Tara on the Cumberland \n",
"3 d29ce96395848478b1e8396e44899 Castle gate - \"lite-brited\" \n",
"4 d29abf32c4e12ff881f975b70e0cec0 A Picture Share! \n",
"... ... ... \n",
"999995 60fa2911cb81eb25b356e9fee978aef U.S. Navy Blue Angels: 2010 \n",
"999996 60f5ef5ce4c2d24566226abebd67d4 Attempts on Her Life \n",
"999997 60f029482d1d1028fda5281daf498f Carlsbad Caverns 3 \n",
"999998 60f72775f433cf8de3efaeb431866153 Want \n",
"999999 60f687e11b913bce461e9525d8047e0 Summertime \n",
"\n",
" description_clean \n",
"0 Antenna \n",
"1 Photographed at the Walters Art Museum, Baltim... \n",
"2 Another trip for the happy couple. \n",
"3 Taken at the Miracle of Lights display in Cent... \n",
"4 Tabular \n",
"... ... \n",
"999995 2 May 2010 Sunday St. Joseph, Missouri \n",
"999996 BAPA 1 production of Martin Crimp's Attempts o... \n",
"999997 ♥♥♥♥♥♥♥ Interested in purchasing this photogra... \n",
"999998 Isn't that gorgeous? \n",
"999999 You gotta love it! \n",
"\n",
"[1000000 rows x 26 columns]"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# looking up at a chunk\n",
"pd.read_csv(\"./chunks/chunk1.tsv\", sep=\"\\t\")"
]
},
{
"cell_type": "code",
"execution_count": 98,
"id": "c51c5597",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>key</th>\n",
" <th>title_clean</th>\n",
" <th>description_clean</th>\n",
" <th>ext</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>d29e7c6a3028418c64eb15e3cf577c2</td>\n",
" <td>A Picture Share!</td>\n",
" <td>Antenna</td>\n",
" <td>jpg</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>d29f01b149167d683f9ddde464bb3db</td>\n",
" <td>An ornate Roman urn</td>\n",
" <td>Photographed at the Walters Art Museum, Baltim...</td>\n",
" <td>jpg</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>d296e9e34bdae41edb6c679ff824ab2a</td>\n",
" <td>Jai & Tara on the Cumberland</td>\n",
" <td>Another trip for the happy couple.</td>\n",
" <td>jpg</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>d29ce96395848478b1e8396e44899</td>\n",
" <td>Castle gate - \"lite-brited\"</td>\n",
" <td>Taken at the Miracle of Lights display in Cent...</td>\n",
" <td>jpg</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>d29abf32c4e12ff881f975b70e0cec0</td>\n",
" <td>A Picture Share!</td>\n",
" <td>Tabular</td>\n",
" <td>jpg</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" key title_clean \\\n",
"0 d29e7c6a3028418c64eb15e3cf577c2 A Picture Share! \n",
"1 d29f01b149167d683f9ddde464bb3db An ornate Roman urn \n",
"2 d296e9e34bdae41edb6c679ff824ab2a Jai & Tara on the Cumberland \n",
"3 d29ce96395848478b1e8396e44899 Castle gate - \"lite-brited\" \n",
"4 d29abf32c4e12ff881f975b70e0cec0 A Picture Share! \n",
"\n",
" description_clean ext \n",
"0 Antenna jpg \n",
"1 Photographed at the Walters Art Museum, Baltim... jpg \n",
"2 Another trip for the happy couple. jpg \n",
"3 Taken at the Miracle of Lights display in Cent... jpg \n",
"4 Tabular jpg "
]
},
"execution_count": 98,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Looking at a chunk with only the relevant columns that we need\n",
"df = pd.read_csv(\"./chunks/chunk1.tsv\", sep=\"\\t\")[[\"key\", \"title_clean\", \"description_clean\", \"ext\"]]\n",
"df.head()"
]
},
{
"cell_type": "markdown",
"id": "cc1668f8",
"metadata": {},
"source": [
"### Grabbing each chunks from the folder, cleaning it up, only taking the entries which image exist and appending it to the global df"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "abbcccf3",
"metadata": {},
"outputs": [],
"source": [
"# the function that helps us to decide whether an image with certain id exists in storage, we only take the ones that we have the images for\n",
"def image_exists(item):\n",
" name, _, _, ext, _ = item\n",
" root=str(yfcc100m_images)\n",
" image_path = (Path(root)/name[0:3]/name[3:6]/name).with_suffix(\".\"+ext)\n",
" if image_path.exists():\n",
" return True\n",
" else:\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 86,
"id": "44fa86ab",
"metadata": {},
"outputs": [],
"source": [
"# This cell does it all, grabs each chunk, cleans it up based on image existing condition, etc.\n",
"global_df = pd.DataFrame()\n",
"chunks_dir = \"./chunks\"\n",
"for filename in os.listdir(chunks_dir):\n",
" df = pd.read_csv(f\"./chunks/{str(filename)}\", sep=\"\\t\")[[\"key\", \"title_clean\", \"description_clean\", \"ext\"]]\n",
" df['caption'] = df[\"title_clean\"]+\". \"+df['description_clean']\n",
" df['is_exist'] = df.apply(image_exists, axis=1)\n",
" df = df.dropna()[[\"key\", \"caption\"]]\n",
" df.columns = ['image_file', 'caption']\n",
" global_df = global_df.append(df, ignore_index=True)"
]
},
{
"cell_type": "code",
"execution_count": 89,
"id": "45024fdc",
"metadata": {},
"outputs": [],
"source": [
"# saving the tsv to disk\n",
"global_df.to_csv('./chunks/YFCC_subset_clean.tsv', sep=\"\\t\", index=False)"
]
},
{
"cell_type": "code",
"execution_count": 101,
"id": "dca4eb73",
"metadata": {},
"outputs": [],
"source": [
"# loading the tsv from disk (for explicitness, also my electricity was gone, glad it happened after I saved to the disk :( )\n",
"\n",
"dataset = pd.read_csv(f\"./chunks/YFCC_subset_clean.tsv\", sep=\"\\t\")"
]
},
{
"cell_type": "code",
"execution_count": 153,
"id": "a511264a",
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"Luke Melas-Kyriazi's dataset.py's modified version for YFCC\n",
"\"\"\"\n",
"import warnings\n",
"from typing import Optional, Callable\n",
"from pathlib import Path\n",
"import numpy as np\n",
"import torch\n",
"import pandas as pd\n",
"from torch.utils.data import Dataset\n",
"from torchvision.datasets.folder import default_loader\n",
"from PIL import ImageFile\n",
"from PIL.Image import DecompressionBombWarning\n",
"ImageFile.LOAD_TRUNCATED_IMAGES = True\n",
"warnings.filterwarnings(\"ignore\", category=UserWarning)\n",
"warnings.filterwarnings(\"ignore\", category=DecompressionBombWarning)\n",
"\n",
"\n",
"class CaptionDataset(Dataset):\n",
" \"\"\"\n",
" A PyTorch Dataset class for (image, texts) tasks. Note that this dataset \n",
" returns the raw text rather than tokens. This is done on purpose, because\n",
" it's easy to tokenize a batch of text after loading it from this dataset.\n",
" \"\"\"\n",
"\n",
" def __init__(self, *, images_root: str, captions_path: str, text_transform: Optional[Callable] = None, \n",
" image_transform: Optional[Callable] = None, image_transform_type: str = 'torchvision',\n",
" include_captions: bool = True):\n",
" \"\"\"\n",
" :param images_root: folder where images are stored\n",
" :param captions_path: path to csv that maps image filenames to captions\n",
" :param image_transform: image transform pipeline\n",
" :param text_transform: image transform pipeline\n",
" :param image_transform_type: image transform type, either `torchvision` or `albumentations`\n",
" :param include_captions: Returns a dictionary with `image`, `text` if `true`; otherwise returns just the images.\n",
" \"\"\"\n",
"\n",
" # Base path for images\n",
" self.images_root = Path(images_root)\n",
"\n",
" # Load captions as DataFrame\n",
" self.captions = pd.read_csv(f\"./chunks/YFCC_subset_clean.tsv\", sep=\"\\t\")\n",
" self.captions['image_file'] = self.captions['image_file'].astype(str)\n",
"\n",
" # PyTorch transformation pipeline for the image (normalizing, etc.)\n",
" self.text_transform = text_transform\n",
" self.image_transform = image_transform\n",
" self.image_transform_type = image_transform_type.lower()\n",
" assert self.image_transform_type in ['torchvision', 'albumentations']\n",
"\n",
" # Total number of datapoints\n",
" self.size = len(self.captions)\n",
"\n",
" # Return image+captions or just images\n",
" self.include_captions = include_captions\n",
" \n",
" def image_exists(item):\n",
" name, caption = item\n",
" root=str(self.images_root)\n",
" image_path = (Path(root)/name[0:3]/name[3:6]/name).with_suffix(\".jpg\")\n",
"\n",
" return image_path.exists()\n",
"\n",
" def verify_that_all_images_exist(self):\n",
" for image_file in self.captions['image_file']:\n",
" if not image_exists:\n",
" print(f'file does not exist: {p}')\n",
"\n",
" def _get_raw_image(self, i):\n",
" name = self.captions.iloc[i]['image_file']\n",
" image_path = (Path(self.images_root)/name[0:3]/name[3:6]/name).with_suffix(\".jpg\")\n",
" image = default_loader(image_path)\n",
" return image\n",
"\n",
" def _get_raw_text(self, i):\n",
" return self.captions.iloc[i]['caption']\n",
"\n",
" def __getitem__(self, i):\n",
" image = self._get_raw_image(i)\n",
" caption = self._get_raw_text(i)\n",
" if self.image_transform is not None:\n",
" if self.image_transform_type == 'torchvision':\n",
" image = self.image_transform(image)\n",
" elif self.image_transform_type == 'albumentations':\n",
" image = self.image_transform(image=np.array(image))['image']\n",
" else:\n",
" raise NotImplementedError(f\"{self.image_transform_type=}\")\n",
" return {'image': image, 'text': caption} if self.include_captions else image\n",
"\n",
" def __len__(self):\n",
" return self.size\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" import albumentations as A\n",
" from albumentations.pytorch import ToTensorV2\n",
" from transformers import AutoTokenizer\n",
" \n",
"\n",
" images_root = \"/home/khali/TPU-Test/YFCC100M_OpenAI_subset/data/data/images\"\n",
" captions_path = './YFCC_subset_clean.tsv'\n",
" image_size = 256\n",
" \n",
" # Create transforms\n",
" def image_transform(image):\n",
" s = min(image.size)\n",
" r = image_size / s\n",
" s = (round(r * image.size[1]), round(r * image.size[0]))\n",
" image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)\n",
" image = TF.center_crop(image, output_size = 2 * [image_size])\n",
" image = torch.unsqueeze(T.ToTensor()(image), 0)\n",
" image = image.permute(0, 2, 3, 1).numpy()\n",
" return image\n",
" \n",
" # Create dataset\n",
" dataset = CaptionDataset(\n",
" images_root=images_root,\n",
" captions_path=captions_path,\n",
" image_transform=image_transform,\n",
" image_transform_type='torchvision',\n",
" include_captions=False\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 155,
"id": "cc922704",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2483316"
]
},
"execution_count": 155,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(dataset)"
]
},
{
"cell_type": "code",
"execution_count": 156,
"id": "6e47ba46",
"metadata": {},
"outputs": [],
"source": [
"dataloader = DataLoader(dataset, batch_size=32, num_workers=4)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c8a130eb",
"metadata": {},
"outputs": [],
"source": [
"# looking at a batch\n",
"next(iter(dataloader))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c192fd44",
"metadata": {},
"outputs": [],
"source": [
"# import matplotlib.pyplot as plt\n",
"# for tensor_image, _ in dataloader:\n",
"# print(tensor_image)\n",
"# plt.imshow(tensor_image.permute(1, 2, 0))\n",
"# break"
]
},
{
"cell_type": "markdown",
"id": "62ad01c3",
"metadata": {},
"source": [
"## Encoding"
]
},
{
"cell_type": "code",
"execution_count": 158,
"id": "88f36d0b",
"metadata": {},
"outputs": [],
"source": [
"def encode(model, batch):\n",
"# print(\"jitting encode function\")\n",
" _, indices = model.encode(batch)\n",
" return indices"
]
},
{
"cell_type": "code",
"execution_count": 160,
"id": "1f35f0cb",
"metadata": {},
"outputs": [],
"source": [
"def superbatch_generator(dataloader, num_tpus):\n",
" iter_loader = iter(dataloader)\n",
" for batch in iter_loader:\n",
" superbatch = [batch.squeeze(1)]\n",
" try:\n",
" for b in range(num_tpus-1):\n",
" batch = next(iter_loader)\n",
" if batch is None:\n",
" break\n",
" # Skip incomplete last batch\n",
" if batch.shape[0] == dataloader.batch_size:\n",
" superbatch.append(batch.squeeze(1))\n",
" except StopIteration:\n",
" pass\n",
" superbatch = torch.stack(superbatch, axis=0)\n",
" yield superbatch"
]
},
{
"cell_type": "code",
"execution_count": 170,
"id": "2210705b",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"def encode_captioned_dataset(dataset, output_tsv, batch_size=32, num_workers=16):\n",
" if os.path.isfile(output_tsv):\n",
" print(f\"Destination file {output_tsv} already exists, please move away.\")\n",
" return\n",
" \n",
" num_tpus = 8 \n",
" dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)\n",
" superbatches = superbatch_generator(dataloader, num_tpus=num_tpus)\n",
" \n",
" p_encoder = pmap(lambda batch: encode(model, batch))\n",
"\n",
" # We save each superbatch to avoid reallocation of buffers as we process them.\n",
" # We keep the file open to prevent excessive file seeks.\n",
" with open(output_tsv, \"w\") as file:\n",
" iterations = len(dataset) // (batch_size * num_tpus)\n",
" for n in tqdm(range(iterations)):\n",
" superbatch = next(superbatches)\n",
" encoded = p_encoder(superbatch.numpy())\n",
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
"\n",
" # Extract fields from the dataset internal `captions` property, and save to disk\n",
" start_index = n * batch_size * num_tpus\n",
" end_index = (n+1) * batch_size * num_tpus\n",
" paths = dataset.captions[\"image_file\"][start_index:end_index].values\n",
" captions = dataset.captions[\"caption\"][start_index:end_index].values\n",
" encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
" batch_df = pd.DataFrame.from_dict({\"image_file\": paths, \"caption\": captions, \"encoding\": encoded_as_string})\n",
" batch_df.to_csv(file, sep='\\t', header=(n==0), index=None)"
]
},
{
"cell_type": "code",
"execution_count": 171,
"id": "7704863d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4850/4850 [2:27:51<00:00, 1.83s/it]\n"
]
}
],
"source": [
"encode_captioned_dataset(dataset, yfcc100m_output, batch_size=64, num_workers=16)"
]
},
{
"cell_type": "markdown",
"id": "8953dd84",
"metadata": {},
"source": [
"----"
]
}
],
"metadata": {
"interpreter": {
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|