File size: 5,354 Bytes
5542365
d4159c9
62e13ba
460f43a
 
6fa1106
d4e833e
 
5542365
b0b9920
6fa1106
bcac695
931b52f
 
5542365
bcac695
64003e8
62e13ba
6fa1106
62e13ba
1ba7fc2
bcac695
5542365
b0b9920
62e13ba
bdaeeba
5542365
bdaeeba
5542365
 
5f44d34
5542365
 
 
 
 
 
 
 
 
 
 
 
 
5f44d34
5542365
00ed1ab
 
5da4af0
 
5f44d34
5542365
5f44d34
5da4af0
753c4f0
 
 
 
 
 
 
 
 
 
5da4af0
 
5542365
931b52f
 
 
5542365
 
 
 
931b52f
 
 
5542365
 
 
 
 
 
931b52f
 
 
 
 
5542365
 
 
ecf5f29
 
4844e74
 
 
 
 
 
2d77795
 
d93a40d
2d77795
 
 
 
4844e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecf5f29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
title: DALL·E mini
emoji: 🥑
colorFrom: yellow
colorTo: green
sdk: streamlit
app_file: app/streamlit/app.py
pinned: True
---

# DALL·E Mini

[![Join us on Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.gg/xBPBXfcFHd)

_Generate images from a text prompt_

<img src="img/logo.png" width="200">

Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".

You can create your own pictures with [the demo](https://huggingface.co/spaces/flax-community/dalle-mini).

## How does it work?

Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).

## Development

### Dependencies Installation

For development, use `pip install -e ".[dev]"`.

### Training of VQGAN

The VQGAN was trained using [taming-transformers](https://github.com/CompVis/taming-transformers).

We recommend using the latest version available.

### Conversion of VQGAN to JAX

Use [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax).

### Training of Seq2Seq

Use [`tools/train/train.py`](tools/train/train.py).

You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.

### Inference Pipeline

To generate sample predictions and understand the inference pipeline step by step, refer to [`tools/inference/inference_pipeline.ipynb`](tools/inference/inference_pipeline.ipynb).

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb)

## FAQ

### Where to find the latest models?

Trained models are on 🤗 Model Hub:

- [VQGAN-f16-16384](https://huggingface.co/flax-community/vqgan_f16_16384) for encoding/decoding images
- [DALL·E mini](https://huggingface.co/flax-community/dalle-mini) for generating images from a text prompt

### Where does the logo come from?

The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.

## Authors & Contributors

### Main Authors

- [Boris Dayma](https://github.com/borisdayma)
- [Suraj Patil](https://github.com/patil-suraj)
- [Pedro Cuenca](https://github.com/pcuenca)

### Other Members of dalle-mini team during FLAX/JAX community week

- [Khalid Saifullah](https://github.com/khalidsaifullaah)
- [Tanishq Abraham](https://github.com/tmabraham)
- [Phúc Lê Khắc](https://github.com/lkhphuc)
- [Luke Melas](https://github.com/lukemelas)
- [Ritobrata Ghosh](https://github.com/ghosh-r)

### Contributing

Join the community on the [DALLE-Pytorch Discord](https://discord.gg/xBPBXfcFHd).
Any contribution is welcome, from reporting issues to proposing fixes/improvements or testing the model on cool prompts!

## Acknowledgements

- 🤗 Hugging Face for organizing [the FLAX/JAX community week](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects)
- Google [TPU Research Cloud (TRC) program](https://sites.research.google/trc/) for providing computing resources
- [Weights & Biases](https://wandb.com/) for providing the infrastructure for experiment tracking and model management

## Citing DALL·E mini

If you find DALL·E mini useful in your research or wish to refer, please use the following BibTeX entry.

```
@misc{Dayma_DALL·E_Mini_2021,
author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata},
doi = {10.5281/zenodo.5146400},
month = {7},
title = {DALL·E Mini},
url = {https://github.com/borisdayma/dalle-mini},
year = {2021}
}
```

## References

```
@misc{ramesh2021zeroshot,
      title={Zero-Shot Text-to-Image Generation}, 
      author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
      year={2021},
      eprint={2102.12092},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

```
@misc{esser2021taming,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2021},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

```
@misc{lewis2019bart,
      title={BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, 
      author={Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Ves Stoyanov and Luke Zettlemoyer},
      year={2019},
      eprint={1910.13461},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```
@misc{radford2021learning,
      title={Learning Transferable Visual Models From Natural Language Supervision}, 
      author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
      year={2021},
      eprint={2103.00020},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```