Spaces:
Runtime error
Runtime error
File size: 5,354 Bytes
5542365 d4159c9 62e13ba 460f43a 6fa1106 d4e833e 5542365 b0b9920 6fa1106 bcac695 931b52f 5542365 bcac695 64003e8 62e13ba 6fa1106 62e13ba 1ba7fc2 bcac695 5542365 b0b9920 62e13ba bdaeeba 5542365 bdaeeba 5542365 5f44d34 5542365 5f44d34 5542365 00ed1ab 5da4af0 5f44d34 5542365 5f44d34 5da4af0 753c4f0 5da4af0 5542365 931b52f 5542365 931b52f 5542365 931b52f 5542365 ecf5f29 4844e74 2d77795 d93a40d 2d77795 4844e74 ecf5f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
---
title: DALL·E mini
emoji: 🥑
colorFrom: yellow
colorTo: green
sdk: streamlit
app_file: app/streamlit/app.py
pinned: True
---
# DALL·E Mini
[![Join us on Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.gg/xBPBXfcFHd)
_Generate images from a text prompt_
<img src="img/logo.png" width="200">
Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
You can create your own pictures with [the demo](https://huggingface.co/spaces/flax-community/dalle-mini).
## How does it work?
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
## Development
### Dependencies Installation
For development, use `pip install -e ".[dev]"`.
### Training of VQGAN
The VQGAN was trained using [taming-transformers](https://github.com/CompVis/taming-transformers).
We recommend using the latest version available.
### Conversion of VQGAN to JAX
Use [patil-suraj/vqgan-jax](https://github.com/patil-suraj/vqgan-jax).
### Training of Seq2Seq
Use [`tools/train/train.py`](tools/train/train.py).
You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
### Inference Pipeline
To generate sample predictions and understand the inference pipeline step by step, refer to [`tools/inference/inference_pipeline.ipynb`](tools/inference/inference_pipeline.ipynb).
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb)
## FAQ
### Where to find the latest models?
Trained models are on 🤗 Model Hub:
- [VQGAN-f16-16384](https://huggingface.co/flax-community/vqgan_f16_16384) for encoding/decoding images
- [DALL·E mini](https://huggingface.co/flax-community/dalle-mini) for generating images from a text prompt
### Where does the logo come from?
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
## Authors & Contributors
### Main Authors
- [Boris Dayma](https://github.com/borisdayma)
- [Suraj Patil](https://github.com/patil-suraj)
- [Pedro Cuenca](https://github.com/pcuenca)
### Other Members of dalle-mini team during FLAX/JAX community week
- [Khalid Saifullah](https://github.com/khalidsaifullaah)
- [Tanishq Abraham](https://github.com/tmabraham)
- [Phúc Lê Khắc](https://github.com/lkhphuc)
- [Luke Melas](https://github.com/lukemelas)
- [Ritobrata Ghosh](https://github.com/ghosh-r)
### Contributing
Join the community on the [DALLE-Pytorch Discord](https://discord.gg/xBPBXfcFHd).
Any contribution is welcome, from reporting issues to proposing fixes/improvements or testing the model on cool prompts!
## Acknowledgements
- 🤗 Hugging Face for organizing [the FLAX/JAX community week](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects)
- Google [TPU Research Cloud (TRC) program](https://sites.research.google/trc/) for providing computing resources
- [Weights & Biases](https://wandb.com/) for providing the infrastructure for experiment tracking and model management
## Citing DALL·E mini
If you find DALL·E mini useful in your research or wish to refer, please use the following BibTeX entry.
```
@misc{Dayma_DALL·E_Mini_2021,
author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata},
doi = {10.5281/zenodo.5146400},
month = {7},
title = {DALL·E Mini},
url = {https://github.com/borisdayma/dalle-mini},
year = {2021}
}
```
## References
```
@misc{ramesh2021zeroshot,
title={Zero-Shot Text-to-Image Generation},
author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
year={2021},
eprint={2102.12092},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```
@misc{esser2021taming,
title={Taming Transformers for High-Resolution Image Synthesis},
author={Patrick Esser and Robin Rombach and Björn Ommer},
year={2021},
eprint={2012.09841},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```
@misc{lewis2019bart,
title={BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension},
author={Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Ves Stoyanov and Luke Zettlemoyer},
year={2019},
eprint={1910.13461},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{radford2021learning,
title={Learning Transferable Visual Models From Natural Language Supervision},
author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
year={2021},
eprint={2103.00020},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
|